COMPUTER
GRAPHICS

FROM SCRATCH

A PROGRAMMER'’S INTRODUCTION

TO 3D RENDERING

COMPUTER GRAPHICS FROM
SCRATCH

COMPUTER
GRAPHICS FROM
SCRATCH

A Programmer’a Introduction to
3D Rendering

by Gabriel Gambetta

¢

no starch
press

San Francisco

COMPUTER GRAPHICS FROM SCRATCH. Copyright © 2021 by Gabriel Gambetta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0076-1 (print)
ISBN-13: 978-1-7185-0077-8 (ebook)

Publisher: William Pollock

Executive Editor: Barbara Yien
Production Manager: Rachel Monaghan
Production Editor: Kassie Andreadis
Developmental Editor: Alex Freed
Cover Illustrator: Rob Gale

Interior Design: Octopod Studios
Technical Reviewer: Alejandro Segovia Azapian
Copyeditor: Gary Smith

Proofreader: Elizabeth Littrell

Indexer: Elise Hess

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1-415-863-9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Gambetta, Gabriel, 1980- author.

Title: Computer graphics from scratch : a programmer's introduction to 3D rendering / Gabriel Gambetta.

Description: San Francisco : No Starch Press, [2021] | Includes index.

Identifiers: LCCN 2020056364 (print) | LCCN 2020056365 (ebook) | ISBN
9781718500761 (print) | ISBN 9781718500778 (ebook)

Subjects: LCSH: Computer graphics.

Classification: LCC T385 .G3524 2021 (print) | LCC T385 (ebook) | DDC
006.6--dc23

LC record available at https://lccn.loc.gov/2020056364

LC ebook record available at https://lccn.loc.gov/2020056365

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

To my dad (1947-2007), architect and self-taught programmer,
who got me started on this path.

My dad, my two-and-a-half-year-old self, and the ZX81.

A Y opresramp
HECHo FOl GABUEL
ik

Seas Yz pNDS

My earliest documented program ever, written at six-and-a-half years old,
drew some lines on the screen of my ZX Spectrum+.

About the Author

Gabriel Gambetta started coding games around the age of 5 on a ZX Spec-
trum. After studying computer science and working at a respectable lo-

cal company in his native Uruguay, he started a game development com-
pany and ran it for 10 years while teaching computer graphics at his alma
mater. More recently, Gambetta has been working at Google Ziirich since
2011, except for a stint as an early engineer at London-based multiplayer
game tech unicorn Improbable, and a year in Madrid focusing on acting and
filmmaking.

About the Technical Reviewer

Alejandro Segovia Azapian is a software engineer with 14+ years of experi-
ence in computer graphics. He has worked for several industry-leading com-
panies in the field of 3D graphics including Autodesk, Electronic Arts, PDI/
DreamWorks, and WB Games, across a variety of realtime graphics projects
spanning apps, games, game engines, and frameworks. Alejandro currently
works in the GPU Software group at a leading consumer electronics com-
pany based in Cupertino, California.

BRIEF CONTENTS

Acknowledgments XV
INtrodUCHioN . . .o xvii
Chapter 1: Introductory Conceptsuiuinii e 1

PART I: RAYTRACING

Chapter 2: Basic Raytracingo 13
Chapter 3: Light . ..o 29
Chapter 4: Shadows and Reflections i 51
Chapter 5: Extending the Raytracer. 65

PART II: RASTERIZATION

Chapter 6: LiNesttt et e e 79
Chapter 7: Filled Triangles 91
Chapter 8: Shaded Triangleso 97
Chapter 9: Perspective Projectionot 105
Chapter 10: Describing and Renderinga Sceneo, 113
Chapter T1: Clipping . ..ottt e 133
Chapter 12: Hidden Surface Removal i 149
Chapter 13: Shadingo 163
Chapter T4: TEXIUIES . ..ottt et e et et 175
Chapter 15: Extending the Rasterizer ... 189
ARErwOrd . .o 201
Appendix: Linear Algebra 203

CONTENTS IN DETAIL

ACKNOWLEDGMENTS b %
INTRODUCTION xvii
Who This Book Is FOr........ooiiiiii xviii
What This BOok COVETSt xviii
Why Read This Book® ... Xix
About This Book ... XX
About the Author XXi
1
INTRODUCTORY CONCEPTS 1
The CanVasottt 1
Coordinate Systemsooiiiiiii 2
Color Models 3
Subtractive Color Model ... 4
Additive Color Model 6
Forget the Details. 7
Color Depth and Representationc..uvuiiiiiiiiiiiiiiiiiii e, 7
Color Manipulation ... 8
The SCONE ... it 9
SUMMUAIY ettt ettt e e e e 10
PART |
RAYTRACING
2
BASIC RAYTRACING 13
Rendering a Swiss Landscapeuuuiiiiiiii i 13
Basic Assumptionst 15
Canvas to Viewport. ... 17
TraCing ROYS . oot 18

The Ray EQuationooiiiiiii e 19

The Sphere Equationo
Ray Meets Sphereoooii
Rendering our First Spheres
SUMMAIY ettt et e e e

3
LIGHT

Simplifying AssumpHionsuuiiii
Light SOURCES ...
Point Lights
Directional Lights
Ambient Light ... oo
[llumination of @ Single Point.
Diffuse Reflectiono o
Modeling Diffuse Reflection ...
The Diffuse Reflection Equation ...,
Sphere Normals.o
Rendering with Diffuse Reflectioncoo .
Specular Reflection ...
Modeling Specular Reflection ...
The Specular Reflection Term ...
The Full lllumination Equation.............cooiiiiiiiiiiiiii .
Rendering with Specular Reflectionsiil.
SUMMIAIY ettt e e e e e

4
SHADOWS AND REFLECTIONS

Shadows ..
Understanding Shadows ...
Rendering with Shadows ...

ReFlECHioNs
Mirrors and Reflection ...
Rendering with Reflections.......................

SUMMAIY et e e

S
EXTENDING THE RAYTRACER

Arbitrary Camera Positioningoouuiiiiiii
Performance Optimizations ...
Parallelization oo
Caching Immutable Valuesoooo

X Contents in Detail

29

29
30
30
31
32
32
33
34
36
36
37
39
42
44
45
45
48

51

51
51
54
57
57
60
62

Shadow Ophmizations ..o 68

Spatial Structures 69
Subsamplingo 70
Supporting Other Primitivesooiiieiiiei i 70
Constructive Solid Geometryooiiiiiii 71
TrOANSPATENCY ..ottt e 73
Refrachion 74
SUPErsampling. . ..o oo 75
SUMMAIY . 75
PART Il
RASTERIZATION
6
LINES 79
Describing Linesoooiii i 80
Drawing Lineso 81
Drawing Lines with Any Slopeoiiiiii i 86
The Linear Interpolation Function ... 87
SUMMIANY ettt e ettt e 90
7
FILLED TRIANGLES 91
Drawing Wireframe Trianglescoooiiiiiiii 91
Drawing Filled Triangleso oo 92
SUMMAIY . 96
8
SHADED TRIANGLES 97
Defining Our Problem 97
Computing Edge Shading ... 98
Computing Interior Shading.........ooiiiiiiii 100
SUMMIAY ettt et et e 102
9
PERSPECTIVE PROJECTION 105
Basic AssUmPHONS 105
Finding P’ oo 106
The Projection EQUAtIONuuuiii e 107

Contents in Detail xi

Properties of the Projection Equation ... 108

Projecting Our First 3D Objectvvvii 109
SUMMGIY ottt et e e e e 111
10
DESCRIBING AND RENDERING A SCENE 113
Representing a Cube o 113
Models and INSIANCES ee et 117
Model Transform 119
Camera Transform 122
The Transform Matrix ... 124
Homogeneous Coordinatesuuiiiieien e 126
Homogeneous Rotation Matrix ..., 127
Homogeneous Scale Matrixooooviiiiiiiiiiiiii 127
Homogeneous Translation Matrix............ocooiiiiiiiiiin... 127
Homogeneous Projection Matrix..........ccooooiiiiiiiiiiiiiiiiin. .. 128
Homogeneous Viewportto-Canvas Matrix ... 129
The Transform Matrix Revisited. ... 129
SUMMIAIY ettt e e e e e e e 131
11
CLIPPING 133
An Overview of the Clipping Processcccovviiiiiiiiiiiiiiiii ... 134
The Clipping Volume ... 134
Clipping the Scene Againsta Plane.......... ... 135
Defining the Clipping Planes ... 138
Clipping Whole Objects 139
Clipping Triangles 142
Segment-Plane Infersectionc.ccooiiiiiiiiiiiiiii i 144
Clipping Pseudocodeoooiiiiiiii 145
Clipping in the Rendering Pipeline 147
SUMMIAIY ettt e e e e et e e e 147
12
HIDDEN SURFACE REMOVAL 149
Rendering Solid Objectsoviiii 149
Painter's Algorithmo 150
Depth Buffering 151
Using 1/Zinstead of Z ... 154

Xii Contents in Detail

Back Face Culling ...
Classifying Trianglesooooo...
SUMMAIY ot e

13
SHADING

Shading vs. lllumination ...
Flat Shadingooooeeee
Gouraud Shading ...
Phong Shading ..ot

SUMMAIY et

14
TEXTURES

Paintinga Crate ...
Bilinear Filtering ...
MIPMAPPING - .o
Trilinear Filtering.ooooiiii
SUMMArY ..o

15
EXTENDING THE RASTERIZER

Normal Mappingcooviiiiiiiiiiiiic i
Environment Mapping ...
Shadows ..o
Stencil Shadows...............oo
Shadow Mapping.......coovviiiiiiiii ..
SUMMArY ..o

AFTERWORD

APPENDIX: LINEAR ALGEBRA

Points. ...
Vectors ...
Representing Vectors ...t
Vector Magnitude ...,
Point and Vector Operationsccoovvueeenn.
Subtracting Points
Adding a Point and a Vector

Contents in Detail

xiii

Adding Vectors ...
Multiplying a Vector by a Numberoo i 207
Multiplying Vectors ... 208
Matrices ... oo 210
Matrix OpPerationst e 210
Adding Matrices ... 211
Multiplying a Matrix by a Number ... 211
Multiplying Matrices ... 211
Multiplying a Matrix and a Vector...........coooiiiiiiiiiiiiiiaann . 212
INDEX 213

Xiv Contents in Detail

ACKNOWLEDGMENTS

Few books happen overnight; the one you’re about to read has been almost
20 years in the making. As you might suspect, many people have been part
of its story, in one way or another, and I want to thank them. In chronologi-
cal order:

Omar Paganini and Ernesto Ocampo Edye As the Dean of the School
of Engineering and the Director of Computer Science at Universidad
Catdlica del Uruguay, they put considerable trust in me by letting me
take the reins of Computer Graphics when I was but a fourth-year stu-
dent, and by letting me completely reshape its curriculum in the way I
thought best. Fellow professor Roberto Lublinerman was a great men-
tor throughout my first year of teaching.

My students from 2003 to 2008 Besides being the unwitting guinea
pigs of my continuously evolving teaching methodology, they accepted
and respected a professor barely a year older than them (and, in some
cases, younger than them). The joy in their faces when they created
their first raytraced images made it all worth it.

Alejandro Segovia Azapian A student turned teaching assistant turned
friend, his input has helped me evolve the material over time; having
been a tiny part of his subsequent, very successful professional career
specialized in realtime rendering and performance optimization fills

me with pride. He was also a technical reviewer of this book, and his
contributions ranged from fixing typos to suggesting deep structural
improvements of some chapters.

Xvi

Acknowledgments

JC Van Winkel He did his own editing pass and came up with a lot of
valuable suggestions for improvement.

The readers of Hacker News My lecture notes, diagrams, and demos
made the front page of Hacker News, and attracted considerable atten-
tion—including that of No Starch Press. If this hadn’t happened, this
book might have never existed.

Bill Pollock, Alex Freed, Kassie Andreadis, and the entire No Starch
Press team They guided me through cleaning up and reshaping my
lecture notes and diagrams, which in my mind were essentially ready to
be published as a book, into an actual book. They took the raw materials
to a whole new level; I had no idea this took so much work and effort,
and Alex, Kassie, and the team did a stellar job. My name is the only one
on the cover, but make no mistake, this was a group effort.

INTRODUCTION

some geometric data to the special effects

for movies like Star Wars and The Avengers, ani-
mated movies like Toy Story and Frozen, or the graphics
of popular video games like Fortnite or Call of Duty?

Computer graphics is also a frighteningly broad topic: from rendering
3D scenes to creating image filters, from digital typography to simulating
particle systems, there are a multitude of disciplines that can be thought of
as part of computer graphics. One book couldn’t hope to cover all these
subjects; it would take a library. This book focuses exclusively on the topic of
rendering 3D scenes.

Computer Graphics from Scratch is my humble attempt to present this one
slice of computer graphics in an accessible way. It is written to be easily un-
derstood by high-school students, while staying rigorous enough for profes-
sional engineers. It covers the same topics as a full university course—it is, in
fact, based on my years of teaching the subject at university.

xviii

Who This Book Is For

This book is for anyone with an interest in computer graphics, from high-
school students to seasoned professionals.

I have made a conscious choice to favor simplicity and clarity in the pre-
sentation. This is reflected in the choice of ideas and algorithms within the
book. While the algorithms are industry-standard, whenever there’s more
than one way to achieve a certain result, I have chosen the one that is easi-
est to understand. At the same time, I've put considerable effort into mak-
ing sure there’s no hand-waving or trickery. I tried to keep in mind Albert
Einstein’s advice: “Everything should be made as simple as possible, but no
simpler.”

There’s little prerequisite knowledge and no hardware or software de-
pendencies. The only primitive used in this book is a method that lets us set
the color of a pixel—as close to from scratch as we can get. The algorithms are
conceptually simple, and the math is straightforward—at most, a tiny bit of
high-school trigonometry. We also use some linear algebra, but the book in-
cludes a short appendix presenting everything we need in a very practical
way.

What This Book Covers

Introduction

This book starts from scratch and builds up to two complete, fully functional
renderers: a raytracer and a rasterizer. Although they follow very differ-

ent approaches, they produce similar results when used to render a simple
scene. Figure 1 shows a comparison.

Figure 1: A simple scene rendered by the raytracer (left] and the rasterizer (right) devel-
oped in this book.

While the features of the raytracer and rasterizer have considerable over-
lap, they are not identical, and this book explores their specific strengths,
some of which can be seen in Figure 2.

Figure 2: The raytracer and the rasterizer have their own unique features. left: raytraced
shadows and recursive reflections; right: rasterized textures.

The book provides informal pseudocode throughout the text, as well
as links to fully working implementations written in JavaScript that can run
directly in any web browser.

Why Read This Book?

This book should give you all the knowledge you need to write software ren-
derers. It does not make use of, or teach you how to use, existing rendering
APIs such as OpenGL, Vulkan, Metal, or DirectX.

Modern GPUs are powerful and ubiquitous, and few people have good
reason to write a pure software renderer. However, the experience of writing
one is valuable for the following reasons:

Shaders are software. The first, ancient GPUs of the early 1990s im-
plemented their rendering algorithms directly in hardware, so you could
use them but not modify them (which is why most games from the mid-
1990s look so similar to each other). Today, you write your own render-
ing algorithms (called skaders in this context) and they run in the special-
ized chips of a GPU.

Knowledge is power. Understanding the theory behind the different
rendering techniques, rather than copying and pasting half-understood
fragments of code or cargo-culting popular approaches, lets you write
better shaders and rendering pipelines.

Introduction Xix

Graphics are fun. Few areas of computer science provide the kind of
instant gratification offered by computer graphics. The sense of accom-
plishment you get when your SQL query runs just right is nothing com-
pared to what you feel the first time you get raytraced reflections right.

I taught computer graphics at university for five years, and I often won-
dered why I enjoyed teaching the same thing semester after semester for
so long; in the end, what made it worth it was seeing the faces of my stu-
dents light up and seeing them use their first rendered scenes as their
desktop backgrounds.

About This Book

This book is divided into two parts, Raytracing and Rasterization, correspond-
ing to the two renderers we are going to build.

The first chapter introduces some basic knowledge necessary to under-
stand these two parts. I suggest you read the chapters in order, but both
parts of the book are self-contained enough that they can be read mostly
independently.

Here’s a brief overview of what you’ll find in each chapter.

Chapter 1: Introductory Concepts We define the canvas, the abstract
surface we’ll be drawing on, and PutPixel, our only tool to draw on it. We
also learn to represent and manipulate colors.

Part I: Raytracing
Chapter 2: Basic Raytracing We develop a basic raytracing algorithm

capable of rendering a few spheres, which look like colored circles.

Chapter 3: Light We establish a model of how light interacts with ob-
jects and extend the raytracer to simulate light. The spheres now look
like spheres.

Chapter 4: Shadows and Reflections We improve the appearance of
the spheres: they cast shadows on each other and can have mirror-like
surfaces where we can see reflections of other spheres.

Chapter 5: Extending the Raytracer We present an overview of addi-
tional features that can be added to the raytracer, but which are beyond
the scope of this book.

Part II: Rasterization

Chapter 6: Lines We start from a blank canvas and develop an algo-
rithm to draw line segments.

XX Introduction

Chapter 7: Filled Triangles We reuse some core ideas from the previ-
ous chapter to develop an algorithm to draw triangles filled with a single
color.

Chapter 8: Shaded Triangles We extend the algorithm from the previ-
ous chapter to fill our triangles with a smooth color gradient.

Chapter 9: Perspective Projection We take a break from drawing 2D
shapes to look at the geometry and math we need to convert a 3D point
into a 2D point we can draw on the canvas.

Chapter 10: Describing and Rendering a Scene We develop a repre-
sentation for objects in the scene and explore how to use perspective
projection to draw them on the canvas.

Chapter 11: Clipping We develop an algorithm to remove the parts of
the scene that the camera can’t see. Now we can safely render the scene
from any camera position.

Chapter 12: Hidden Surface Removal We combine perspective pro-
jection and shaded triangles to render solid-looking objects; for this to
work correctly, we need to ensure distant objects don’t cover closer ob-
jects.

Chapter 13: Shading We explore how to apply the lighting equation
developed in Chapter 3 to entire triangles.

Chapter 14: Textures We develop an algorithm to “paint” images on
our triangles as a way to fake surface detail.

Chapter 15: Extending the Rasterizer We present an overview of
features that can be added to the rasterizer, but which are beyond the
scope of this book.

Appendix: Linear Algebra We introduce the basic concepts from lin-
ear algebra that are used throughout this book: points, vectors, and
matrices. We present the operations we can do with them and provide
some examples of what we can use them for.

About the Author

I'm a senior software engineer at Google. In the past, I've worked at Improb-
able (http.//improbable.io), who have a good shot at building the Matrix for
real (or at the very least revolutionizing multiplayer game development), and
at Mystery Studio (http.//mysterystudio.com), a game development company

I founded and ran for about a decade and which released almost 20 games
you’ve probably never heard of.

Introduction xxi

http://improbable.io
http://mysterystudio.com

XXxii

Introduction

I taught computer graphics for five years at university, where it was a
semester-long third-year subject. I am grateful to all of my students, who
served as unwitting guinea pigs for the materials that inspired this book.

I have other interests besides computer graphics, engineering-related
and otherwise. See my website, http://gabrielgambetta.com, for more details
and contact information.

http://gabrielgambetta.com

INTRODUCTORY CONCEPTS

A raytracer and a rasterizer take very dif-
ferent approaches to rendering a 3D scene

onto a 2D screen. However, there are a few
fundamental concepts that are common to both
approaches.

In this chapter, we’ll explore the canvas, the abstract surface on which
we’ll render our images; the coordinate system we’ll use to refer to pixels on
the canvas; how to represent and manipulate colors; and how to describe a
3D scene so our renderers can work with it.

The Canvas

Throughout this book, we’ll be drawing things on a canvas: a rectangular ar-
ray of pixels that can be individually colored. Whether this canvas is shown
on a screen or printed on paper is irrelevant to our purposes. Our goal is

to represent a 3D scene on a 2D canvas, so we’ll focus on rendering to this
abstract, rectangular array of pixels.

Chapter 1

We’ll build everything in this book out of a single, very simple function,
which assigns a color to a pixel on the canvas:

canvas.PutPixel(x, y, color)

This method has three arguments: an x coordinate, a y coordinate, and a
color. Let’s focus on the coordinates for now.

Coordinate Systems

The canvas has a width and a height, measured in pixels, which we’ll call C,,
and Cj,. We need a coordinate system to refer to its pixels. For most com-
puter screens, the origin is at the top left; x increases toward the right of the
screen, and y increases toward the bottom, as in Figure 1-1.

0 1920
0

X

1080

vY

Figure 1-1: The coordinate system used by most computer screens

This coordinate system is very natural for a computer because of the
way video memory is organized, but it’s not the most natural for humans to
work with. Instead, 3D graphics programmers tend to use the coordinate
system typically used to draw graphs on paper: the origin is at the center, x
increases toward the right and decreases toward the left, while y increases
toward the top and decreases toward the bottom, as in Figure 1-2.

540

-960 0 960 x

-540

Figure 1-2: The coordinate system we'll use for our canvas

Using this coordinate system, the range of the x coordinate is [_g’”, %)

and the range of the y coordinate is [_QQ, %) Let’s assume that using the
PutPixel function with coordinates outside these ranges does nothing.

In our examples, the canvas will be drawn on the screen, so we’ll need
to convert from one coordinate system to the other. To do this, we need to

change the center of the coordinate system and reverse the direction of the

Y axis. The resulting conversion equations are:

C
Se= g G
Ch
Syzg_Cy

We will assume PutPixel does this conversion automatically; from this
point on, we can think of the canvas as having its coordinate origin at the
center, with x increasing to the right and y increasing to the top of the screen.

Let’s take a look at the remaining argument of PutPixel: the color.

Color Models

The theory of how color works is fascinating, but it’s outside the scope of
this book. The following is a simplified version of the aspects relevant to us.

When light hits our eyes, it stimulates the light-sensitive cells at the back
of them. These generate brain signals that depend on the wavelength of
the incoming light. We call the subjective experience of these brain signals
colors.

Introductory Concepts 3

4

Chapter 1

We can’t normally see wavelengths outside of the visible range. Wave-
length and frequency are inversely related (the more frequently the wave
hits, the smaller the distance between the peaks of that wave). This is why
infrared (wavelengths longer than 740 nm, corresponding to frequencies
lower than 405 terahertz [THz]) is harmless, but ultraviolet (wavelengths
shorter than 380 nm, corresponding to frequencies higher than 790 THz)
can burn your skin.

Every color imaginable can be described as different combinations of
these colors. “White” is the sum of all colors, while “black” is the absence
of any colors. It would be impractical to describe colors by describing the
exact wavelengths they’re made of; fortunately, it’s possible to create almost
all colors as a linear combination of just three colors, which we call primary
colors.

Subtractive Color Model

The subtractive color model is a fancy name for that thing you did with crayons
as a toddler. You take a white piece of paper and red, blue, and yellow cray-
ons. You draw a yellow circle, then a blue circle that overlaps it, and you

get green! Yellow and red—orange! Red and blue—purple! Mix the three
together—something darkish! Wasn’t kindergarten amazing? Figure 1-3
shows the primary colors of the subtractive model, and the colors that result
from mixing them.

Figure 1-3: Subtractive primary colors and their combinations

Objects are of different colors because they absorb and reflect light in
different ways. Let’s start with white light, like sunlight (sunlight isn’t quite
white, but it’s close enough for our purposes). White light contains light of
every wavelength. When it hits an object, the object’s surface absorbs some
of the wavelengths and reflects others, depending on the material. Some of
the reflected light then hits our eyes, and our brains convert that to color.
What color? The sum of the wavelengths that were reflected by the surface.

So what’s going on with the crayons? You start with white light reflect-
ing off the paper. Since it’s white paper, it reflects most of the light it re-
ceives. When you draw with a “yellow” crayon, you're adding a layer of a ma-
terial that absorbs some wavelengths but lets others pass through it. They’re
reflected by the paper, pass through the yellow layer again, hit your eyes,
and your brain interprets that particular combination of wavelengths as “yel-
low.” What the yellow layer does is subtract a bunch of wavelengths from the
original white light.

You can think of each colored circle as a filter: when you draw a blue
circle overlapping the yellow one, you're filtering out even more wavelengths
from the original light, so what hits your eyes is whatever wavelengths weren’t
filtered by either the blue or the yellow circles, which your brain sees as
“green.”

In summary, we start with all wavelengths and subtract some amount of
the primary colors to create any other color. This color model gets its name
from the fact that we’re creating colors by subtracting wavelengths.

This model isn’t quite right, though. The actual primary colors in the
subtractive model aren’t the blue, red, and yellow taught to toddlers and
art students, but cyan, magenta, and yellow. Furthermore, mixing the three
primary colors produces a somewhat darkish color that isn’t quite black, so
pure black is added as a fourth “primary.” Because B is used to represent
blue, black is denoted by K, and so we arrive at the CMYK color model (Fig-
ure 1-4).

You can see evidence of this color model directly on the cartridges of
color printers, or sometimes in the shapes of cheaply printed flyers where
the different colors are slightly offset from one another.

Introductory Concepts 5

Figure 1-4: The four subtractive primary colors used by printers

Additive Color Model

The subtractive color model is only half the story. If you've ever looked at a
screen up close or with a magnifying glass (or, let’s be honest, accidentally
sneezed on it), you've probably seen tiny colored dots: these are red, green,
and blue.

Computer screens are the opposite of paper. Paper doesn’t emit light; it
merely reflects part of the light that hits it. Screens, on the other hand, are
black, but they do emit light on their own. With paper, we start with white
light and subtract the wavelengths we don’t want; with a screen, we start with
no light and add the wavelengths we want.

Different primary colors are necessary for this. Most colors can be cre-
ated by adding different amounts of red, green, and blue to a black surface;
this is the RGB color model, an additive color model, shown in Figure 1-5.

The combination of additive primary colors is lighter than its compo-
nents, whereas the combination of subtractive primary colors is darker; all
the additive primaries add up to white, while all the subtractive primaries
add up to black.

6 Chapter 1

Figure 1-5: The additive primary colors and some of their combinations

Forget the Details

Now that you know all this, you can selectively forget most of the details and
focus on what’s important for our work.

Most colors can be represented in either RGB or CMYK (or in any of
the many other color models), and it’s possible to convert from one color
space to another. Since we’re focusing on rendering things on a screen, we
use the RGB color model for the rest of this book.

As described above, objects absorb part of the light reaching them and
reflect the rest. Which wavelengths are absorbed and which are reflected is
what we perceive as the “color” of the surface. From now on, we’ll simply
treat the color as a property of a surface and forget about light wavelengths.

Color Depth and Representation

Monitors create colors by mixing different amounts of red, green, and blue.
They do this by lighting the tiny colored dots on their surface at different
intensities by supplying different voltages to them.

How many different intensities can we get? Although voltage is continu-
ous, we’ll be manipulating colors with a computer, which uses discrete

Introductory Concepts 7

8

values (that is, a limited number of them). The more shades of red, green,
and blue we can represent, the more colors we’ll be able to produce.

Most images you see these days use 8 bits per primary color, which we
call a color channel in this context. Using 8 bits per channel gives us 24 bits
per pixel, for a total of 924
This format, known as RSG8BS or simply 888, is the one we’ll use through-
out this book. We say this format has a color depth of 24 bits.

This is by no means the only possible format. Not so long ago, in order

to save memory, 15- and 16-bit formats were popular, assigning 5 bits per

different colors (approximately 16.7 million).

channel in the 15-bit case, and 5 bits for red, 6 for green, and 5 for blue in
the 16-bit case (known as the R5G6B5 or 565 format). Green gets the extra
bit because our eyes are more sensitive to changes in green than to changes
in red or blue.

With 16 bits, we get 216 colors (approximately 65,000). This means you
get one color for every 256 colors in 24-bit mode. Although 65,000 colors is
plenty, for images where colors change very gradually you would be able to
see very subtle “steps” that just aren’t visible with 16.7 million colors, where
there are enough bits to represent the colors in between. For some special-
ized applications, such as color grading for movies, it’s a good idea to repre-
sent even more color detail, using even more bits per channel.

We’ll use 3 bytes to represent a color, each holding the value of an 8-
bit color channel, from 0 to 255. We’ll express the colors as (R, G, B)—for
example, (255, 0, 0) represents pure red; (255, 255, 255) represents white;
and (255, 0, 128) represents a reddish purple.

Color Manipulation

Chapter 1

We'll use a handful of operations to manipulate colors. If you know some
linear algebra, you can think of colors as vectors in 3D color space. If not,
don’t worry, we’ll go through the basic operations we’ll be using now.

We can modify the intensity of a color by multiplying each of its color
channels by a constant:

k(R,G,B) = (kR, kG, kB)

For example, (32, 0, 128) is twice as bright as (16, 0, 64).
We can add two colors together by adding their color channels sepa-
rately:

(RlaGl’Bl) +(R2’G2’B2) = (Rl +R2’G1 + GQaBl +B2)

For example, if we want to combine red (255, 0, 0) and green (0, 255, 0), we
add them channel-wise and get (255, 255, 0), which is yellow.

These operations can yield invalid values; for example, doubling the in-
tensity of (192, 64, 32) produces an R value outside our color range. We’ll
treat any value over 255 as 255, and any value below 0 as 0; we call this clamp-
ing the value to the [0-255] range. This is more or less equivalent to what
happens when you take an under- or over-exposed photograph in real life:
you get either completely black or completely white areas.

That about sums it up for our primer on colors and PutPixel. Before we
move on to the next chapter, let’s spend a little time exploring how to repre-
sent the 3D objects we’ll be rendering.

The Scene

So far, we have introduced the canvas, the abstract surface on which we can
color pixels. Now we turn our attention to the objects we’re interested in
representing by introducing another abstraction: the scene.

The scene is the set of objects you may be interested in rendering. It
could represent anything, from a single sphere floating in the empty infinity
of space (we’ll start there) to an incredibly detailed model of the inside of a
grumpy ogre’s nose.

We need a coordinate system to talk about objects within the scene. We
can’t use the same coordinate system as the canvas, for two reasons. First,
the canvas is 2D, whereas the scene is 3D. Second, the canvas and the scene
use different units: we use pixels for the canvas and real-world units (such as
the imperial or metric systems) for the scene.

The choice of axes is arbitrary, so we’ll pick something useful for our
purposes. We’ll say that Yis up and X and Z are horizontal, and all three
axes are perpendicular to each other. Think of the plane XZ as the “floor,”
while XY and YZ are vertical “walls” in a square room. This is consistent with
the coordinate system we chose for the canvas, where Y'is up and X is hori-
zontal. Figure 1-6 shows what this looks like.

Y

X

Figure 1-6: The coordinate system
we'll use for our scenes

The choice of scene units is somewhat arbitrary; it depends on what
your scene represents. A measurement of “1” could mean 1 inch if you’re
modeling a teacup, or it could mean 1 astronomical unit if you’re modeling

Introductory Concepts 9

10

the Solar System. As long as we use our chosen units consistently, it doesn’t
matter what they are, so we can safely ignore them from now on.

Summary

Chapter 1

In this chapter, we’ve introduced the canvas, an abstraction that represents
a rectangular surface we can draw on, plus the one method we’ll build ev-
erything else on: PutPixel. We’ve also chosen a coordinate system to refer to
the pixels on the canvas and described a way to represent the color of these
pixels. Lastly, we introduced the concept of a scene and chose a coordinate
system to use in the scene.

Having laid these foundations, it’s time to start building a raytracer and
a rasterizer on top of them.

PART |

BASIC RAYTRACING

In this chapter, we’ll introduce raytracing,
the first major algorithm we’ll cover. We
start by motivating the algorithm and laying
out some basic pseudocode. Then we look at
how to represent rays of light and objects in a scene.
Finally, we derive a way to compute which rays of light
make up the visible image of each of the objects in our

scene and see how we can represent them on the
canvas.

Rendering a Swiss Landscape

Suppose you’re visiting some exotic place and come across a stunning

landscape—so stunning, you just need to make a painting capturing its beauty.
Figure 2-1 shows one such landscape.

14

Chapter 2

Figure 2-1: A breathtaking Swiss landscape

You have a canvas and a paint brush, but you absolutely lack artistic tal-
ent. Is all hope lost?

Not necessarily. You may not have artistic talent, but you are methodi-
cal. So you do the most obvious thing: you get an insect net. You cut a rect-
angular piece, frame it, and fix it to a stick. Now you can look at the land-
scape through a netted window. Next, you choose the best point of view to
appreciate this landscape and plant another stick to mark the exact position
where your eye should be.

You haven’t started the painting yet, but now you have a fixed point of
view and a fixed frame through which you can see the landscape. Moreover,
this fixed frame is divided into small squares by the insect net. Now comes
the methodical part. You draw a grid on the canvas, giving it the same num-
ber of squares as the insect net. Then you look at the top-left square of the
net. What'’s the predominant color you can see through it? Sky blue. So
you paint the top-left square of the canvas sky blue. You do this for every
square, and soon enough the canvas contains a pretty good painting of the
landscape, as seen through the frame. The resulting painting is shown in
Figure 2-2.

Figure 2-2: A crude approximation of the landscape

When you think about it, a computer is essentially a very methodical
machine absolutely lacking artistic talent. We can describe the process of
creating our painting as follows:

For each little square on the canvas
Paint it the right color

Easy! However, that formulation is too abstract to implement directly on
a computer. We can go into a bit more detail:

Place the eye and the frame as desired

For each square on the canvas
Determine which square on the grid corresponds to this square on the canvas
Determine the color seen through that grid square
Paint the square with that color

This is still too abstract, but it starts to look like an algorithm—and per-
haps surprisingly, that’s a high-level overview of the full raytracing algo-
rithm! Yes, it’s that simple.

Basic Assumptions

Part of the charm of computer graphics is drawing things on the screen. To
achieve this as soon as possible, we’ll make some simplifying assumptions.

Basic Raytracing 15

16

Chapter 2

Of course, these assumptions impose some restrictions over what we can do,
but we’ll lift the restrictions in later chapters.

First of all, we’ll assume a fixed viewing position. The viewing position,
the place where you’d put your eye in the Swiss landscape analogy, is com-
monly called the camera position; let’s call it O. We’'ll assume that the camera
occupies a single point in space, that it is located at the origin of the coordi-
nate system, and that it never moves from there, so O = (0, 0, 0) for now.

Second, we’ll assume a fixed camera orientation. The camera orienta-
tion determines where the camera is pointing. We’ll assume it looks in the
direction of the positive Z axis (which we’ll shorten to Z_;), with the positive
Y axis (V3) up and the positive X axis (X+) to the right (Figure 2-3).

Y

7]

X

Figure 2-3: The position and orientation
of the camera

The camera position and orientation are now fixed. Still missing from
the analogy is the “frame” through which we look at the scene. We’ll as-
sume this frame has dimensions V,, and V}, and is frontal to the camera
orientation—that is, perpendicular to Z+. We'll also assume it’s at a distance
d, its sides are parallel to the X and Y axes, and it’s centered with respect to
Z. That’s a mouthful, but it’s actually quite simple. Take a look at Figure 2-4.

The rectangle that will act as our window to the world is called the view-
port. Essentially, we’ll draw on the canvas whatever we see through the view-
port. Note that the size of the viewport and the distance to the camera de-
termine the angle visible from the camera, called the field of view, or FOV for
short. Humans have an almost 180° horizontal FOV (although much of it
is blurry peripheral vision with no sense of depth). For simplicity, we’ll set
Vw = Vj, = d = 1; this results in a FOV of approximately 53°, which produces
reasonable-looking images that are not overly distorted.

vh

S

X

Figure 2-4: The position and orientation
of the viewport

Let’s go back to the “algorithm” presented earlier, use the appropriate
technical terms, and number the steps in Listing 2-1.

@ Place the camera and the viewport as desired
For each pixel on the canvas
@ Determine which square on the viewport corresponds to this pixel
® Determine the color seen through that square
® Paint the pixel with that color

Listing 2-1: A high-level description of our raytracing algorithm

We have just done step @ (or, more precisely, gotten it out of the way for
now). Step @ is trivial: we simply use canvas.PutPixel(x, y, color). Let’s do
step @ quickly, and then focus our attention on increasingly sophisticated
ways of doing step ® over the next few chapters.

Canvas to Viewport

Step @ of our algorithm in Listing 2-1 asks us to Determine which square on
the viewport corresponds to this pixel. We know the canvas coordinates of
the pixel—let’s call them Cy and Cy. Notice how we conveniently placed the
viewport so that its axes match the orientation of those of the canvas, and its
center matches the center of the canvas. Because the viewport is measured
in world units and the canvas is measured in pixels, going from canvas coor-
dinates to space coordinates is just a change of scale!

V.
Vx=CxC7w
w
Vi

Basic Raytracing 17

18

There’s an extra detail. Although the viewport is 2D, it’s embedded in
3D space. We defined it to be at a distance d from the camera; every point in
this plane (called the projection plane) has, by definition, z = d. Therefore,

V.=d

And we’re done with this step. For each pixel (Cy, Cy) on the canvas, we
can determine its corresponding point on the viewport (Vy, Vy, V2).

Tracing Rays

Chapter 2

The next step is to figure out what color the light coming through (V,, Vy, V)
is, as seen from the camera’s point of view (Ox, Oy, O;).

In the real world, light comes from a light source (the Sun, a light bulb,
and so on), bounces off several objects, and then finally reaches our eyes.
We could try simulating the path of every photon leaving our simulated light
sources, but it would be extremely time-consuming. Not only would we have
to simulate a mind-boggling number of photons (a single 100 W light bulb
emits 1020 photons per second!), only a tiny minority of them would happen
to reach (Oy, Oy, O,) after coming through the viewport. This technique is
called photon tracing or photon mapping; unfortunately, it’s outside the scope
of this book.

Instead, we’ll consider the rays of light “in reverse”; we’ll start with a ray
originating from the camera, going through a point in the viewport, and
tracing its path until it hits some object in the scene. This object is what the
camera “sees” through that point of the viewport. So, as a first approxima-
tion, we’ll just take the color of that object as “the color of the light coming
through that point,” as shown in Figure 2-5.

X

Figure 2-5: A tiny square in the viewport, representing
a single pixel in the canvas, painted with the color
of the object the camera sees through it

Now we just need some equations.

The Ray Equation

The most convenient way to represent a ray for our purposes is with a para-
metric equation. We know the ray passes through O, and we know its direc-
tion (from O to V), so we can express any point P in the ray as

P=0+(V-0)

where ¢ is any real number. By plugging every value of ¢ from —oo to +oo into
this equation, we get every point P along the ray.
Let’s call (V- 0), the direction of the ray, D. The equation becomes

P=0+1tD

An intuitive way to understand this equation is that we start the ray
at the origin (O) and “advance” along the direction of the ray (D) by some
amount (¢); it’s easy to see that this includes all the points along the ray. You
can read more details about these vector operations in the Linear Algebra
appendix. Figure 2-6 shows our equation in action.

/

D

O

Figure 2-6: Some points of the ray O + D
for different values of t.

Figure 2-6 shows the points along the ray that corresponds to ¢ = 0.5 and
¢t =1.0. Every value of ¢ yields a different point along the ray.

The Sphere Equation

Now we need to have some sort of object in the scene, so that our rays can
hit something. We could choose any arbitrary geometric primitive as the
building block of our scenes; for raytracing, we’ll use spheres because they’re
easy to manipulate with equations.

What is a sphere? A sphere is the set of points that lie at a fixed distance
from a fixed point. That distance is called the radius of the sphere, and the
point is called the center of the sphere. Figure 2-7 shows a sphere, defined by
its center C and its radius 7.

Basic Raytracing 19

20

Chapter 2

Figure 2-7: A sphere, defined
by its center and its radius

According to our definition above, if C is the center and 7 is the radius
of a sphere, the points P on the surface of that sphere must satisfy the fol-
lowing equation:

distance(P, C) =r

Let’s play a bit with this equation. If you find any of this math unfamil-
iar, read through the Linear Algebra appendix.
The distance between P and C is the length of the vector from P to C:

|P-C|=r

The length of a vector (denoted | ‘7|) is the square root of its dot product
with itself (denoted (V, V)):

(P-C,P-C)=r
To get rid of the square root, we can square both sides:
(P-C,P-C)=+*

All these formulations of the sphere equation are equivalent, but this
last one is the most convenient to manipulate in the following steps.

Ray Meets Sphere

We now have two equations: one describing the points on the sphere, and
one describing the points on the ray:

2

(P-C,P-C)

P=0+tD

Do the ray and the sphere intersect? If so, where?

Suppose the ray and the sphere do intersect at a point P. This point is
both along the ray and on the surface of the sphere, so it must satisfy both
equations at the same time. Note that the only variable in these equations is

the parameter ¢, since O, 5, C, and r are given and P is the point we’re trying
to find.

Since P represents the same point in both equations, we can substitute P
in the first one with the expression for P in the second. This gives us

(O+tD-C,0+tD~-C) =+

If we can find values of ¢ that satisfy this equation, we can put them in
the ray equation to find the points where the ray intersects the sphere.

In its current form, the equation is somewhat unwieldy. Let’s do some
algebraic manipulation to see what we can get out of it.

First, let CO = O - C. Then we can write the equation as

(CO+1tD, CO+ (D) =+

Then we expand the dot product into its components, using its distribu-
tive properties (again, feel free to consult the Linear Algebra appendix):

(CO + D, CO) + (CO + tD, tD) = >

(CO, CO) + (tD, CO) + (CO, D) + (tD, tD) = >
Rearranging the terms a bit, we get
(tD, tD) + 2(CO, (D) + (CO, CO) = r*

Moving the parameter ¢ out of the dot products and moving 7° to the
other side of the equation gives us

2(D, D) + 1(2(CO, D)) + (CO, CO) -r* = 0

Remember that the dot product of two vectors is a real number, so every
term between angle brackets is a real number. If we give them names, we’ll
get something much more familiar:

a=(D,D)
b =2(CO, D)

¢=(CO,CO) -+

at? +bt+c=0

Basic Raytracing 21

22

This is nothing more and nothing less than a good old quadratic equa-
tion! Its solutions are the values of the parameter ¢ where the ray intersects
the sphere:

-b + Vb% - 4ac
2a

Fortunately, this makes geometrical sense. As you may remember, a
quadratic equation can have no solutions, one double solution, or two dif-
ferent solutions, depending on the value of the discriminant b? - 4ac. This
corresponds exactly to the cases where the ray doesn’t intersect the sphere,
the ray is tangent to the sphere, and the ray enters and exits the sphere, re-
spectively (Figure 2-8).

{t1, 12} =

No
solutions One
solution

Two

solutions

Figure 2-8: The geometrical interpretation of the solutions
to the quadratic equation: no solutions, one solution,
or two solutions.

Once we have found the value of ¢, we can plug it back into the ray
equation, and we finally get the intersection point P corresponding to that
value of ¢.

Rendering our First Spheres

Chapter 2

To recap, for each pixel on the canvas, we can compute the corresponding
point on the viewport. Given the position of the camera, we can express the
equation of a ray that starts at the camera and goes through that point of

the viewport. Given a sphere, we can compute where the ray intersects that
sphere.

So all we need to do is to compute the intersections of the ray and each
sphere, keep the intersection closest to the camera, and paint the pixel on
the canvas with the appropriate color. We’re almost ready to render our first
spheres!

The parameter ¢ deserves some extra attention, though. Let’s go back to
the ray equation:

P=0+(V-0)

Since the origin and direction of the ray are fixed, varying ¢ across all the
real numbers will yield every point P in this ray. Note that for ¢ = 0 we get
P = 0,andfort = 1weget P = V. Negative values of ¢ yield points in the
opposite direction—that is, behind the camera. So, we can divide the parame-
ter space into three parts, as in Table 2-1. Figure 2-9 shows a diagram of the
parameter space.

Table 2-1: Subdivisions of the Parameter Space

t<0 Behind the camera
O<t<1 Beftween the camera and the projection plane/viewport
t>1 In front of the projection plane/viewport

Projection
plane

v
=0+1(V-0)

O+0.5(V-0)
0-0.25(V-0) @)

Figure 2-9: A few points in parameter space

Note that nothing in the intersection equation says that the sphere has
to be in front of the camera; the equation will happily produce solutions for
intersections behind the camera. Obviously, this isn’t what we want, so we
should ignore any solutions with ¢ < 0. To avoid further mathematical un-
pleasantness, we’ll restrict the solutions to ¢ > 1; that is, we’ll render whatever
is beyond the projection plane.

On the other hand, we don’t want to put an upper bound on the value
of ¢; we want to see all objects in front of the camera, no matter how far away
they are. However, because in later stages we will want to cut rays short, we’ll
introduce this formalism now and give ¢ an upper value of +oo (for languages

Basic Raytracing 23

24

Chapter 2

that can’t represent “infinity” directly, a really really big number does the
trick).

We can now formalize everything we’ve done so far with some pseu-
docode. As a general rule, we’ll assume the code has access to whatever data
it needs, so we won’t bother explicitly passing around parameters such as
the canvas and will focus on the really necessary ones.

The main method now looks like Listing 2-2.

0= (0, 0, 0)
for x = -Cw/2 to Cw/2 {
for y = -Ch/2 to Ch/2 {
D = CanvasToViewport(x, y)
color = TraceRay(0, D, 1, inf)
canvas.PutPixel(x, y, color)

}

Listing 2-2: The main method

The CanvasToViewport function is very simple, and is shown in Listing 2-3.
The constant d represents the distance between the camera and the projec-
tion plane.

CanvasToViewport(x, y) {
return (x*Vw/Cw, y*Vh/Ch, d)
}

Listing 2-3: The CanvasToViewport function

The TraceRay method (Listing 2-4) computes the intersection of the ray
with every sphere and returns the color of the sphere at the nearest intersec-
tion inside the requested range of ¢.

TraceRay(0, D, t_min, t_max) {
closest t = inf
closest_sphere = NULL
for sphere in scene.spheres {
t1, t2 = IntersectRaySphere(0, D, sphere)
if t1 in [t_min, t max] and t1 < closest t {
closest t = t1
closest_sphere = sphere
}
if t2 in [t_min, t_max] and t2 < closest_t {
closest t = t2
closest_sphere = sphere

}
if closest_sphere == NULL {

@ return BACKGROUND COLOR
}

return closest_sphere.color

}

Listing 2-4: The TraceRay method

In Listing 2-4, 0 represents the origin of the ray; although we’re tracing
rays from the camera, which is placed at the origin, this won’t necessarily be
the case in later stages, so it has to be a parameter. The same applies to t_min
and t_max.

Note that when the ray doesn’t intersect any sphere, we still need to re-
turn some color @—I've chosen white in most of these examples.

Finally, IntersectRaySphere (Listing 2-5) just solves the quadratic equation.

IntersectRaySphere(0, D, sphere) {
r = sphere.radius
CO = 0 - sphere.center

dot(D, D)
b = 2*dot(CO, D)
dot(CO, CO) - r*r

n
n

discriminant = b*b - 4*a*c
if discriminant < 0 {
return inf, inf

}
t1 = (-b + sqrt(discriminant)) / (2*a)
t2 = (-b - sqrt(discriminant)) / (2*a)

return t1, t2

}

Listing 2-5: The IntersectRaySphere method

To put all of this into practice, let’s define a very simple scene, shown in
Figure 2-10.

Basic Raytracing 25

Z=1

Side view

Top view
Figure 2-10: A very simple scene, viewed from above (left] and from the right (right)

In pseudoscene language, it’s something like this:

viewport size = 1 x 1
projection plane d = 1

sphere {
center = (0, -1, 3)
radius = 1
color = (255, 0, 0) # Red
}
sphere {
center = (2, 0, 4)
radius = 1

color = (0, 0, 255) # Blue

}
sphere {
center = (-2, 0, 4)
radius = 1
color = (0, 255, 0) # Green
}

When we run our algorithm on this scene, we’re finally rewarded with
an incredibly awesome raytraced scene (Figure 2-11).

26 Chapter 2

Figure 2-11: An incredibly awesome raytraced scene

You can find a live implementation of this algorithm at https:;//
gabrielgambetta.com/cgfs/basic-rays-demo.

I know, it’s a bit of a letdown, isn’t it? Where are the reflections and the
shadows and the polished look? Don’t worry, we’ll get there. This is a good
first step. The spheres look like circles, which is better than if they looked
like cats. The reason they don’t look quite like spheres is that we’re missing a
key component of how human beings determine the shape of an object: the
way it interacts with light. We’ll cover that in the next chapter.

Summary

In this chapter, we’ve laid down the foundations of our raytracer. We’ve
chosen a fixed setup (the position and orientation of the camera and the
viewport, as well as the size of the viewport); we’ve chosen representations
for spheres and rays; we’ve explored the math necessary to figure out how
spheres and rays interact; and we’ve put all this together to draw the spheres
on the canvas using solid colors.

The next chapters build on this by modeling the way the rays of light
interact with objects in the scene in increasing detail.

Basic Raytracing 27

https://gabrielgambetta.com/cgfs/basic-rays-demo
https://gabrielgambetta.com/cgfs/basic-rays-demo

LIGHT

We'll start adding “realism” to our render-
ing of the scene by introducing light. Light

is a vast and complex topic, so we’ll present

a simplified model that is good enough for our
purposes. This model is, for the most part, inspired
by how light works in the real world, but it also takes
some liberties with the aim of making the rendered
scenes look good.

We’ll start with some simplifying assumptions that will make our lives
easier, then we’ll introduce three types of light sources: point lights, direc-
tional lights, and ambient light. We’ll end the chapter by discussing how
these lights affect the appearance of surfaces, including diffuse and specu-
lar reflection.

Simplifying Assumptions

Let’s make a few assumptions to make things simpler. First, we declare that
all light is white. This lets us characterize any light using a single real number,

i, called the intensity of the light. Simulating colored lights isn’t that com-
plicated (we’d just use three intensity values, one per color channel, and
compute all color and lighting channel-wise), but we’ll stick to white lights
to keep things simple.

Second, we’ll ignore the atmosphere. In real life, lights look dimmer the
farther away they are; this is because of particles floating in the air that ab-
sorb part of the light as it travels through them. While this isn’t particularly
complicated to do in a raytracer, we’ll keep it simple and ignore this effect;
in our scene, distance doesn’t make lights any less bright.

Light Sources

Light has to come from somewhere. In this section, we’ll define three differ-
ent types of light sources.

Point Lights

Point lights emit light from a fixed point in 3D space, called their position.
They emit light equally in every direction; this is why they are also called om-
nidirectional lights. A point light is therefore fully described by its position
and its intensity.

A light bulb is a good real-life approximation of a point light. While a
real-life light bulb doesn’t emit light from a single point, and it isn’t perfectly
omnidirectional, it’s a pretty accurate approximation.

Let’s define the vector L as the direction from a point in the scene, P,
to the light, Q. We can calculate this vector, called the light vector, as Q — P.
Note that since Q is fixed but P can be any point in the scene, L is different
for every point in the scene, as you can see in Figure 3-1.

P

1

Figure 3-1: A point light at Q. The L vector
is different for every point P.

30 Chapter 3

Directional Lights

If a point light is a good approximation of a light bulb, does it also work as
an approximation of the Sun?

This is a tricky question, and the answer depends on what we are trying
to render. At the solar-system scale, the Sun can be approximated as a point
light. After all, it emits light from a point, and it emits in all directions, so it
seems to qualify.

However, if our scene represents something happening on Earth, it’s
not such a good approximation. The Sun is so far away that every ray of light
that reaches us has almost exactly the same direction. We could approximate
this with a point light located very, very, very far away from the objects in
the scene. However, the distance between the light and the objects would be
orders of magnitude greater than the distance between objects, so we’d start
running into numerical accuracy errors.

To better handle these situations, we define directional lights. Like point
lights, directional lights have an intensity, but unlike them, they don’t have
a position; instead, they have a fixed direction. You can think of them as in-
finitely distant point lights located in the specified direction.

While in the case of point lights we need to compute a different light
vector L for every point P in the scene, in this case Lis given. In the Sun-to-
Earth scene example, L would be (center of Sun) — (center of Earth). Figure 3-2
shows what this looks like.

P

2

Figure 3-2: A directional light. The L vector is the
same for every point P.

As we can see here, the light vector of a directional light is the same for
every point in the scene. Compare this with Figure 3-1, where the light vec-
tor of a point light is different for every point in the scene.

tight 31

Ambient Light

Can every real-life light be modeled as a point or directional light? Pretty
much. Are these two types of light enough to light a scene? Unfortunately
not.

Consider what happens to the Moon. The only significant light source
nearby is the Sun. So the “front half” of the Moon with respect to the Sun
gets all its light, and its “back half” is in complete darkness. We see this from
different angles from Earth, creating what we call the “phases” of the Moon.

However, the situation down here on Earth is a bit different. Even points
that don’t receive light directly from a light source aren’t completely in the
dark (just look at the floor under your chair). How do rays of light reach
these points if their “view” of the light sources is obstructed by something
else?

As mentioned in “Color Models” in Chapter 1, when light hits an ob-
ject, part of it is absorbed, but the rest is scattered back into the scene. This
means that light can come not only from light sources, but also from objects
that get light from light sources and scatter part of it back into the scene.
But why stop there? The scattered light will in turn hit some other object,
part of it will be absorbed, and part of it will be scattered back into the scene.
And so on, until all of the energy of the original light has been absorbed by
the surfaces in the scene.

This means we should treat every object as a light source. As you can imag-
ine, this would add a lot of complexity to our model, so we won’t explore
that mechanism in this book. If you’re curious, search for global illumination
and marvel at the pretty pictures.

But we still don’t want every object to be either directly illuminated or
completely dark (unless we’re actually rendering a model of the solar sys-
tem). To overcome this limitation, we’ll define a third type of light source,
called ambient light, which is characterized only by its intensity. We’ll declare
that an ambient light contributes some light to every point in the scene, re-
gardless of where it is. It’s a gross oversimplification of the very complex
interaction between the light sources and the surfaces in the scene, but it
works well enough.

In general, a scene will have a single ambient light (because ambient
lights only have an intensity value, any number of them can be trivially com-
bined into a single ambient light) and an arbitrary number of point and di-
rectional lights.

lllumination of a Single Point

Now that we know how to define the lights in a scene, we need to figure out
how the lights interact with the surfaces of the objects in the scene.

32 Chapter 3

In order to compute the illumination of a single point, we’ll compute
the amount of light contributed by each light source and add them together
to get a single number representing the total amount of light the point re-
ceives. We can then multiply the color of the surface at that point by this
amount to get the shade of color that represents how much light it receives.

So, what happens when a ray of light, be it from a directional light or a
point light, hits a point on some object in our scene?

We can intuitively classify objects into two broad classes, depending
on how they reflect light: “matte” and “shiny” objects. Since most objects
around us can be classified as matte, we’ll focus on this group first.

Diffuse Reflection

When a ray of light hits a matte object, the ray is scattered back into the
scene equally in every direction, a process called diffuse reflection; this is what
makes matte objects look matte.

To verify this, look at some matte object around you, such as a wall. If
you move with respect to the wall, its color doesn’t change. That is, the light
you see reflected from the object is the same no matter where you’re looking
from.

On the other hand, the amount of light reflected does depend on the
angle between the ray of light and the surface. Intuitively, this happens be-
cause the energy carried by the ray has to spread over a smaller or bigger
area depending on the angle, so the energy reflected to the scene per unit
of area is higher or lower, respectively, as shown in Figure 3-3.

N

Figure 3-3: The energy of a ray of light spreads over areas of different size, depending on
its angle to the surface.

In Figure 3-3, we can see two rays of light of the same intensity (repre-
sented by having the same width) hitting a surface head-on and at an angle.
The energy carried by the rays of light spreads uniformly across the areas
they hit. The energy of the ray on the right spreads across a bigger area than

tight 33

34

Chapter 3

that of the ray on the left, and therefore each point in its area receives less
energy than in the left-hand case.

To explore this mathematically, let’s characterize the orientation of a
surface by its normal vector. The normal vector of a surface at point P, or sim-
ply “the normal,” is a vector perpendicular to the surface at P. It’s also a unit
vector, meaning its length is 1. We'll call this vector N.

Modeling Diffuse Reflection

A ray of light with direction L and intensity / hits a surface with normal N.
What fraction of I is reflected back to the scene, as a function of I, N, and L?

As a geometric analogy, let’s represent the intensity of the light as the
“width” of the ray. Its energy spreads over a surface of size A. When Nand L
have the same direction—when the ray is perpendicular to the surface—then
I = A, which means the energy reflected per unit of area is the same as the
incident energy per unit of area: % = 1. On the other hand, as the angle
between L and N approaches 90°, A approaches oo, so the energy per unit of
area approaches 0; limy _, o % = 0. But what happens in between?

The situation is depicted in Figure 3-4. We know N, L, and P; I have
added the angles o and 3, and the points Q, R, and S to make writing about
the diagram easier.

Figure 3-4: The vectors and angles involved in the diffuse
reflection calculations

Since a ray of light technically has no width, we can assume that every-
thing happens in a flat, infinitesimally small patch of the surface. Even if it’s
the surface of a sphere, the area we’re considering is so infinitesimally small
that it’s almost flat in comparison with the size of the sphere, just like Earth
looks flat at small scales.

The ray of light, with a width of /, hits the surface at P, at an angle (.
The normal at Pis N, and the energy carried by the ray spreads over A. We
need to compute %.

Consider RS, the “width” of the ray. By definition, it’s perpendicular
to E, which is also the direction of PQ. Therefore, PQ and QR form a right
angle, making POR a right triangle.

One of the angles of PQR is 90°, and another is 5. The remaining angle
is therefore 90° — 5. But note that N and PR also form a right angle, which
means « + /5 must also be 90°. Therefore, @’ =q.

Let’s focus on the triangle PQR (Figure 3-5). Its angles are «, /3, and 90°.
The side QR measures é, and the side PR measures %

R

—

Figure 3-5: The PQR triangle in a trigonometry context

And now, trigonometry to the rescue! By definition, cos(a) = %—g; substi-
tuting QR with 4 and PR with 4, we get

I
cos(a) = %
2

which becomes
cos(a) = 1

We’re almost there. « is the angle between N and L. We can use the
properties of the dot product (feel free to consult the Linear Algebra ap-
pendix) to express cos(a) as

N, L
cos(a) = <_,’ 2
INTIL]
And finally
1_ (NI
A INIIL]

We have arrived at a simple equation that gives us the fraction of light
that is reflected as a function of the angle between the surface normal and
the direction of the light.

Note that the value of cos(«) becomes negative for angles over 90°. If
we blindly use this value, we can end up with a light source that makes a

light 35

36

Chapter 3

surface darker! This doesn’t make any physical sense; an angle over 90° just
means the light is actually illuminating the back of the surface, and therefore
it doesn’t contribute any light to the point we’re illuminating. So if cos(c)
becomes negative, we need to treat it as if it was 0.

The Diffuse Reflection Equation

We can now formulate an equation to compute the full amount of light re-
ceived by a point P with normal N in a scene with an ambient light of inten-

sity I4 and n point or directional lights with intensity /,, and light vectors L,
either known (for directional lights) or computed for P (for point lights):

—

It’s worth repeating that the terms where (,L:> < 0 shouldn’t be added to
the point’s illumination.

Sphere Normals

There’s only a small detail missing: where do the normals come from? The
answer to this general question is far more complex than it might seem, as
we’ll see in the second part of this book. Fortunately, at this point we’re only
dealing with spheres, and there’s a very simple answer for them: the normal
vector of any point of a sphere lies on a line that goes through the center of
the sphere. As you can see in Figure 3-6, if the sphere center is C, the direc-
tion of the normal at point Pis P—- C.

Figure 3-6: The normal of a sphere at P has
the same direction as CP.

Why “the direction of the normal” and not “the normal”? A normal
vector needs to be perpendicular to the surface, but it also needs to have

length 1. To normalize this vector and turn it into a true normal, we need to
divide it by its own length, thus guaranteeing the result has length 1:

P-C
|P-C]|

N=

Rendering with Diffuse Reflection

Let’s translate all of this to pseudocode. First, let’s add a couple of lights to
the scene:

light {
type = ambient
intensity = 0.2

}
light {
type = point
intensity = 0.6
position = (2, 1, 0)
}
light {
type = directional
intensity = 0.2
direction = (1, 4, 4)
}

Note that the intensities conveniently add up to 1.0; because of the way
the lighting equation works, this ensures that no point can have a light in-
tensity greater than this value. This means we won’t have any “overexposed”
spots.

The lighting equation is fairly straightforward to translate to pseudocode
(Listing 3-1).

ComputeLighting(P, N) {
i=0.0
for light in scene.lights {
if light.type == ambient {
O i += light.intensity
} else {
if light.type == point {
@ | = light.position - P
} else {
® L = light.direction
}

tight 37

n_dot_1 = dot(N, L)

® if n_dot 1>0 {
® i += light.intensity * n_dot 1/(length(N) * length(L))
}

}

return i

}

Listing 3-1: A function to compute lighting with diffuse reflection

In Listing 3-1, we treat the three types of light in slightly different ways.
Ambient lights are the simplest and are handled directly @®. Point and direc-
tional lights share most of the code, in particular the intensity calculation
@, but the direction vectors are computed in different ways (@ and @), de-
pending on their type. The condition in @ makes sure we don’t add negative
values, which represent lights illuminating the back side of the surface, as we
discussed before.

The only thing left to do is to use ComputeLighting in TraceRay. We replace
the line that returns the color of the sphere:

return closest_sphere.color

with this snippet:

P =0 + closest_t * D // Compute intersection

N = P - closest_sphere.center // Compute sphere normal at intersection
N = N / length(N)

return closest_sphere.color * ComputelLighting(P, N)

Just for fun, let’s add a big yellow sphere:

sphere {
color = (255, 255, 0) # Yellow
center = (0, -5001, 0)
radius = 5000

We run the renderer and, lo and behold, the spheres now start to look
like spheres (Figure 3-7)!

38 Chapter 3

Figure 3-7: Diffuse reflection adds a sense of depth and volume to the scene.

You can find a live implementation of this algorithm at https.//
gabrielgambetta.com/cgfs/diffuse-demo.

But wait, how did the big yellow sphere turn into a flat yellow floor? It
hasn’t; it’s just so big compared to the other three spheres, and the camera
is so close to it, that it looks flat—just like the surface of our planet looks flat
when we’re standing on it.

Specular Reflection

Let’s turn our attention to shiny objects. Unlike matte objects, shiny objects
look slightly different depending on where you’re looking from.

Imagine a billiard ball or a car just out of the car wash. These kinds of
objects exhibit very specific light patterns, usually bright spots, that seem to
move as you move around them. Unlike matte objects, the way you perceive
the surface of these objects does actually depend on your point of view.

Note that a red billiard ball stays red if you walk around it, but the bright
white spot that gives it its shiny appearance moves as you do. This shows that
the new effect we want to model doesn’t replace diffuse reflection, but in-
stead complements it.

To understand why this happens, let’s take a closer look at how surfaces
reflect light. As we saw in the previous section, when a ray of light hits the
surface of a matte object, it’s scattered back to the scene equally in every di-
rection. This happens because the surface of the object is irregular, so at the

Light 39

https://gabrielgambetta.com/cgfs/diffuse-demo
https://gabrielgambetta.com/cgfs/diffuse-demo

40

Chapter 3

microscopic level it behaves like a set of tiny surfaces pointing in random
directions (Figure 3-8).

Figure 3-8: What the rough surface of a matte object might look like through a micro-
scope. The incident rays of light are reflected in random directions.

But what if the surface isn’t that irregular? Let’s go to the other extreme:
a perfectly polished mirror. When a ray of light hits a mirror, it’s reflected in
a single direction. If we call the direction of the reflected light R, and we
keep the convention that L points toward the light source, Figure 3-9 illus-
trates the situation.

Figure 3-9: Rays of light reflected by a mirror

Depending on how “polished” the surface is, it behaves more or less like
a mirror; this is why it’s called specular reflection, from speculum, the Latin
word for mirror.

For a perfectly polished mirror, the incident ray of light L is reflected in
a single direction, R. This is why you see reflected objects very clearly: for
every incident ray of light L, there’s a single reflected ray R. But not every

object is perfectly polished; while most of the light is reflected in the direc-
tion of R, some of it is reflected in directions close to R. The closer to R, the
more light is reflected in that direction, as you can see in Figure 3-10. The
“shininess” of the object is what determines how rapidly the reflected light
decreases as you move away from R.

Figure 3-10: For surfaces that aren’t perfectly polished, the closer a
direction is to R, the more rays of light are reflected in that direction.

We want to figure out how much light from L is reflected back in the
direction of our point of view. If Vis the “view vector” pointing from P to
the camera, and « is the angle between R and V, we get Figure 3-11.

N
A

Figure 3-11: The vectors and angles involved in the specular
reflection calculation

For o = 0°, all the light is reflected in the direction of V. For a = 90°, no
light is reflected. As with diffuse reflection, we need a mathematical expres-
sion to determine what happens for intermediate values of a.

Light 41

42

Chapter 3

Modeling Specular Reflection

At the beginning of this chapter, I mentioned that some models aren’t based
on physical models. This is one of them. The following model is arbitrary,
but it’s used because it’s easy to compute and it looks good.

Consider cos(c). It has the nice properties that cos(0) = 1 and cos(£90) =
0, just like we need; and the values become gradually smaller from 0 to 90 in
a very pleasant curve (Figure 3-12).

0.8

cos(a)
o
o

03

0.0

~I
w
w
o
N
w
o
[
w
w
o
~J
w

Figure 3-12: The graph of cos(a).

This means cos(a) matches all of our requirements for the specular re-
flection function, so why not use it?

There’s one more detail. If we used this formula straight away, every
object would be equally shiny. How can we adapt the equation to represent
varying degrees of shininess?

Remember that shininess is a measure of how quickly the reflection
function decreases as « increases. A simple way to obtain different shini-
ness curves is to compute the power of cos(a) to some positive exponent s.
Since 0 < cos(a) < 1, we are guaranteed that 0 < cos(a)® < 1; so cos(a)’ is
just like cos(a), only “narrower.” Figure 3-13 shows the graph for cos(a)® for
different values of s.

cos(a)s

Figure 3-13: The graph of cos(a)®

The bigger the value of s, the “narrower” the function becomes around
0 and the shinier the object looks. s is called the specular exponent and it’s a
property of the surface. Since the model is not based on physical reality, the
values of s can only be determined by trial and error—essentially, tweaking
the values until they look “right.” For a physically based model, you can look
into bi-directional reflectance functions (BDRFs).

Let’s put all of this together. A ray of light hits a surface with specular
exponent s at point P, where its normal is N, from direction L. How much
light is reflected toward the viewing direction V?

According to our model, this value is cos(c)*, where « is the angle be-
tween Vand R; R is in turn L reflected with respect to N. So the first step is
to compute R from N and L.

We can decompose L into two vectors, L_}) and L_]'V, such that . = L;V + L_;),
where Ly is parallel to Nand Lpis perpendicular to N (Figure 3-14).

Figure 3-14: Decomposing Linto its
components Lp and Ly

light 43

44

Chapter 3

Ly is the projection of . over N; by the properties of the dot product
and the fact that |[N| = 1, the length of this projection is (N, L). We defined
Ly to be parallel to N, so Ly = N(N, L).

Since L = Lp + Ly, we can immediately get Lp=L-Ly=L- N(ﬁ, E)

Now let’s look at R. Since it’s symmetrical to L with respect to N, its
component parallel to N is the same as L’s, and its perpendicular compo-
nent is the opposite of L’s; that is, R = Ly - Lp. You can see this in Figure 3-
15.

Figure 3-15: Computing Lg
Substituting with the expressions we found above, we get
B=N(N,I) -+ NN,)

and simplifying a bit

The Specular Reflection Term

We’re now ready to write an equation for the specular reflection:

As with diffuse lighting, it’s possible that cos(c) is negative, and we should
ignore it for the same reason as before. Also, not every object has to be shiny;
for matte objects, the specular term shouldn’t be computed at all. We’ll note
this in the scene by setting their specular exponent to —1 and handling them
accordingly.

The Full lllvmination Equation

We can add the specular reflection term to the illumination equation we’ve
been developing and get a single expression that describes illumination at a
point:

n - - [Ky
Ip=Iy+ > I |—=—=—+ e
2.1 l|N||Li| |R;|| V]

=1

where Ip is the total illumination at point P, I is the intensity of the ambient
light, N is the normal of the surface at P, V'is the vector from P to the cam-
era, s is the specular exponent of the surface, I; is the intensity of light ¢, L; is
the vector from P to light i, and R; is the reflection vector at P for light i.

Rendering with Specular Reflections

Let’s add specular reflections to the scene we’ve been working with so far.
First, some changes to the scene itself:

sphere {
center = (0, -1, 3)
radius = 1

color = (255, 0, 0) # Red
specular = 500 # Shiny

}
sphere {
center = (2, 0, 4)
radius = 1
color = (0, 0, 255) # Blue
specular = 500 # Shiny
}
sphere {
center = (-2, 0, 4)
radius = 1
color = (0, 255, 0) # Green
specular = 10 # Somewhat shiny
}
sphere {
center = (0, -5001, 0)
radius = 5000
color = (255, 255, 0) # Yellow
specular = 1000 # Very shiny
}

light 45

This is the same scene as before, with the addition of specular expo-
nents to the sphere definitions.

At the code level, we need to change ComputelLighting to compute the
specular term when necessary, and add it to the overall light. Note that the
function now needs V and $, as you can see in Listing 3-2.

ComputeLighting(P, N, V, s) {
i=o0.0
for light in scene.lights {
if light.type == ambient {
i += light.intensity
} else {
if light.type == point {
L = light.position - P
} else {
L = light.direction

// Diffuse
n_dot 1 = dot(N, L)
if n_dot_1 > 0 {
i += light.intensity * n_dot_1/(length(N) * length(L))

// Specular
O ifs l=-1{
R=2*N*dot(N, L) - L
r _dot v = dot(R, V)
@ if r dot v > 0 {
i += light.intensity * pow(r_dot_v/(length(R) * length(V)), s)

}

return i

}

Listing 3-2: Computelighting that supports both diffuse and specular reflections

Most of the code remains unchanged, but we add a fragment to handle
specular reflections. We make sure it applies only to shiny objects @ and
also make sure we don’t add negative light intensity @, as we did for diffuse
reflection.

46 Chapter 3

Finally, we need to modify TraceRay to pass the new parameters to Compute
Lighting. s is straightforward: it comes directly from the scene definition.
But where does V come from?

Vis a vector that points from the object to the camera. Fortunately, we
already have a vector that points from the camera to the object at TraceRay—
that’s D, the direction of the ray we’re tracing! So V is simply —D.

Listing 3-3 gives the new TraceRay with specular reflection.

TraceRay(0, D, t min, t max) {
closest_t = inf
closest_sphere = NULL
for sphere in scene.Spheres {
t1, t2 = IntersectRaySphere(0, D, sphere)
if t1 in [t _min, t max] and t1 < closest t {
closest t = t1
closest_sphere = sphere
}
if t2 in [t_min, t_max] and t2 < closest_t {
closest t = t2
closest_sphere = sphere

}
if closest_sphere == NULL {

return BACKGROUND_COLOR

}

P =0+ closest_t * D // Compute intersection

N = P - closest_sphere.center // Compute sphere normal at intersection
N = N / length(N)

@ return closest_sphere.color * ComputeLighting(P, N, -D, closest sphere.specular)

}

Listing 3-3: TraceRay with specular reflection

The color calculation @ is slightly more involved than it looks. Remem-
ber that colors must be multiplied channel-wise and the results must be
clamped to the range of the channel (in our case, [0-255]). Although in the
example scene the light intensities add up to 1.0, now that we’re adding the
contributions of specular reflections, the values could go beyond that range.

You can see the reward for all this vector juggling in Figure 3-16.

gt 47

48

Figure 3-16: The scene rendered with ambient, diffuse, and specular
reflection. Not only do we get a sense of depth and volume, but
each surface also has a slightly different appearance.

You can find a live implementation of this algorithm at https://
gabrielgambetta.com/cgfs/specular-demo.

Note that in Figure 3-16, the red sphere with a specular exponent of 500
has a more concentrated bright spot than the green sphere with a specular
exponent of 10, exactly as expected. The blue sphere also has a specular ex-
ponent of 500 but no visible bright spot. This is only a consequence of how
the image is cropped and how the lights are placed in the scene; indeed, the
left half of the red sphere also doesn’t exhibit any specular reflection.

Summary

Chapter 3

In this chapter, we’ve taken the very simple raytracer developed in the previ-
ous chapter and given it the ability to model lights and the way they interact
with the objects in the scene.

We split lights into three types: point, directional, and ambient. We ex-
plored how each of them can represent a different type of light that you can
find in real life, and how to describe them in our scene definition.

We then turned our attention to the surface of the objects in the scene,
splitting them into two types: matte and shiny. We discussed how rays of
light interact with them and developed two models—diffuse and specular
reflection—to compute how much light they reflect toward the camera.

https://gabrielgambetta.com/cgfs/specular-demo
https://gabrielgambetta.com/cgfs/specular-demo

The end result is a much more realistic rendering of the scene: instead
of seeing just the outlines of the objects, we now get a real sense of depth
and volume and a feel for the materials the objects are made of.

However, we are missing a fundamental aspect of lights: shadows. This
is the focus of the next chapter.

gt 49

SHADOWS AND REFLECTIONS

Our quest to render the scene in progres-
sively more realistic ways continues. In the
previous chapter, we modeled the way rays
of light interact with surfaces. In this chapter,
we’ll model two aspects of the way light interacts with
the scene: objects casting shadows and objects reflect-

ing on other objects.

Shadows

Where there are lights and objects, there are shadows. We have lights and
objects. So where are our shadows?

Understanding Shadows

Let’s begin with a more fundamental question. Why skould there be shad-
ows? Shadows happen when there’s a light whose rays can’t reach an object
because there’s some other object in the way.

52

Chapter 4

In the previous chapter, we only looked at the very local interactions be-
tween a light source and a surface, while ignoring everything else happening
in the scene. For shadows to happen, we need to take a more global view and
consider the interaction between a light source, a surface we want to draw,
and other objects present in the scene.

Conceptually, what we’re trying to do is relatively simple. We want to
add a little bit of logic that says “if there’s an object between the point and
the light, don’t add the illumination coming from this light.”

The two cases we want to distinguish are shown in Figure 4-1.

Point is lit

Point is in shadow

Figure 4-1: A shadow is cast over a point whenever there's
an object between the light source and that point.

It turns out we already have all of the tools we need to do this. Let’s start
with a directional light. We know P; that’s the point we’re interested in. We
know E; that’s part of the definition of the light. Knowing P and l_:, we can
define a ray, namely P + ¢L, that goes from the point on the surface to the
infinitely distant light source. Does this ray intersect any other object? If it
doesn’t, there’s nothing between the point and the light, so we compute the
illumination from this light as before. If it does, the point is in shadow, so we
ignore the illumination from this light.

We already know how to compute the closest intersection between a ray
and a sphere: the TraceRay function we’re using to trace the rays from the
camera. We can reuse most of it to compute the closest intersection between
the ray of light and the rest of the scene.

The parameters for this function are slightly different, though:

e Instead of starting from the camera, the ray starts from P.

e The direction of the ray is not (V- O) but L.

* We don’t want objects behind P to cast shadows over it, so we need
tmin = 0.

e Since we’re dealing with directional lights, which are infinitely far
away, a very distant object should still cast a shadow over P, 50 tyqx =
+00.

Figure 4-2 shows two points, Py and P;. When tracing a ray from P
in the direction of the light, we find no intersections with any objects; this
means the light can reach Py, so there’s no shadow over it. In the case of
Pq, we find two intersections between the ray and the sphere, with¢ > 0
(meaning the intersection is between the surface and the light); therefore,

the point is in shadow.

Figure 4-2: The sphere casts a shadow over Py,
but not over Py.

We can treat point lights in a very similar way, with two exceptions. First,
L is not constant, but we already know how to compute it from P and the
position of the light. Second, we don’t want objects farther away from the
light to be able to cast a shadow over P, so in this case we need tyqx = 1 so
that the ray “stops” at the light.

Figure 4-3 shows these situations. When we cast a ray from Py with di-
rection L, we find intersections with the small sphere; however, these have
¢t > 1, meaning they are not between the light and Py, so we ignore them.
Therefore P is not in shadow. On the other hand, the ray from P; with di-
rection Lj intersects the big sphere with 0 < ¢ < 1, so the sphere casts a
shadow over Pj.

There’s a literal edge case we need to consider. Consider the ray P + (L.
If we look for intersections starting from ¢,,;, = 0, we’ll find one at P itself]
We know P is on a sphere, so for ¢t =0, P+ 0L = P; in other words, every point
would be casting a shadow over itself!

Shadows and Reflections 53

54

Chapter 4

f>])

No shadows

t=1

Figure 4-3: We use the value of t at the intersections to
determine whether they cast a shadow over the point.

The simplest workaround is to set {,;, to a very small value ¢ instead of
0. Geometrically, we’re saying we want the ray to start just a tiny bit off the
surface where P is, rather than exactly at P. So the range will be [¢, +oo] for
directional lights and [e, 1] for point lights.

It might be tempting to fix this by just not computing intersections be-
tween the ray and the sphere P belongs to. This would work for spheres,
but it would fail for objects with more complex shapes. For example, when
you use your hand to protect your eyes from the Sun, your hand is casting a
shadow over your face, and both surfaces are part of the same object - your
body.

Rendering with Shadows

Let’s turn the above discussion into pseudocode.

In its previous version, TraceRay computes the closest ray-sphere inter-
section, and then computes lighting on the intersection. We need to extract
the closest intersection code, since we want to reuse it to compute shadows
(Listing 4-1).

ClosestIntersection(0, D, t_min, t_max) {
closest_t = inf
closest_sphere = NULL
for sphere in scene.Spheres {
t1, t2 = IntersectRaySphere(0, D, sphere)
if t1 in [t_min, t_max] and t1 < closest_t {
closest_t = t1
closest sphere = sphere
}
if t2 in [t_min, t_max] and t2 < closest_t {
closest_t = t2

closest_sphere = sphere

}

return closest sphere, closest t

}

Listing 4-1: Computing the closest intersection

We can rewrite TraceRay to reuse that function, and the resulting version
is much simpler (Listing 4-2).

TraceRay(0, D, t_min, t max) {
closest_sphere, closest_t = ClosestIntersection(0, D, t_min, t_max)
if closest_sphere == NULL {
return BACKGROUND_COLOR

0 + closest t * D

= P - closest_sphere.center

= N / length(N)

return closest_sphere.color * ComputelLighting(P, N, -D, closest_sphere.specular)

=Z 2 U -
1

}

Listing 4-2: A simpler version of TraceRay after factoring out ClosestIntersection

Then, we need to add the shadow check @ to ComputeLighting (Listing
4-3).

ComputeLighting(P, N, V, s) {
i=o0.0
for light in scene.lights {
if light.type == ambient {
i += light.intensity
} else {
if light.type == point {
L = light.position - P
t max = 1
} else {
L = light.direction
t_max = inf

// Shadow check
@ shadow_sphere, shadow t = ClosestIntersection(P, L, 0.001, t max)
if shadow_sphere != NULL {
continue

Shadows and Reflections 55

// Diffuse
n_dot_1 = dot(N, L)
if n_dot 1 > 0 {
i += light.intensity * n_dot_1 / (length(N) * length(L))

// Specular
ifs!l=-1{
R=2*N*dot(N, L) - L
r_dot_v = dot(R, V)
if r_dot_ v > 0 {
i += light.intensity * pow(r_dot_v / (length(R) * length(V)), s)

}

return i

}

Listing 4-3: Computelighting with shadow support

Figure 4-4 shows what the freshly rendered scene looks like.

Figure 4-4: A raytraced scene, now with shadows

56 Chapter 4

You can find a live implementation of this algorithm at https;//gabriel
gambetta.com/cgfs/shadows-demo. In this demo, you can choose whether to
trace rays from ¢ = 0 or from ¢ = € to get a clearer picture of the difference it
makes.

Now we’re getting somewhere. Objects in the scene interact with each
other in a more realistic way, casting shadows over each other. Next we’ll
explore more interactions between objects—namely, objects reflecting other
objects.

Reflections

In the previous chapter, we talked about surfaces that are “mirror-like,” but
that only gave them a shiny appearance. Can we have objects that look like
true mirrors—that is, can we see other objects reflected on their surface? We
can, and in fact doing this in a raytracer is remarkably simple, but it can also
be mind-twisting the first time you see how it’s done.

Mirrors and Reflection

Let’s look at how mirrors work. When you look at a mirror, what you’re
seeing are the rays of light that bounce off the mirror. Rays of light are re-
flected symmetrically with respect to the surface normal, as you can see in
Figure 4-5.

Mirror

Figure 4-5: A ray of light bounces off a mirror
in a direction symmetrical to the mirror’s normal.

Suppose we’re tracing a ray, and the closest intersection happens to be
with a mirror. What color is this ray of light? It’s not the color of the mir-
ror itself, because we’re looking at reflected light. So we need to figure out
where this light is coming from and what color it is. So all we have to do is
compute the direction of the reflected ray and figure out the color of the
light coming from that direction.

If only we had a function that, given a ray, returned the color of the light
coming from its direction...

Oh, wait! We do have one, and it’s called TraceRay!

Shadows and Reflections 57

https://gabrielgambetta.com/cgfs/shadows-demo
https://gabrielgambetta.com/cgfs/shadows-demo

58

Chapter 4

In the main loop, for each pixel, we create a ray from the camera to the
scene and we call TraceRay to figure out what color the camera “sees” in that
direction. If TraceRay determines that the camera is seeing a mirror, it just
needs to compute the direction of the reflected ray and to figure out the
color of the light coming from that direction; it must call . .. itself.

At this point, I suggest you read the last couple of paragraphs again un-
til you get it. If this is the first time you’ve read about recursive raytracing, it
may take a couple of reads and some head scratching until you really get it.

Go on, I'll wait—and once the euphoria of this beautiful aha! moment
has started to wane, let’s formalize this a bit.

When we design a recursive algorithm (one that calls itself), we need
to ensure we don’t cause an infinite loop (also known as “This program has
stopped responding. Do you want to terminate it?”). This algorithm has two
natural exit conditions: when the ray hits a non-reflective object and when
it doesn’t hit anything. But there’s a simple case where we could get trapped
in an infinite loop: the infinite hall effect. This is what happens when you
put a mirror in front of another and look into it—infinite copies of yourself!

There are many ways to prevent an infinite recursion. We’ll just intro-
duce a recursion limit to the algorithm; this will control how “deep” it can go.
Let’s call it . When r = 0, we see objects but no reflections. When r = 1, we
see objects and the reflections of some objects on them (Figure 4-6).

Figure 4-6: Reflections limited to one recursive call (r = 1). We see
spheres reflected on spheres, but the reflected spheres
don’t look reflective themselves.

When r = 2, we see objects, the reflections of some objects, and the re-
flections of the reflections of some objects (and so on for greater values of
r). Figure 4-7 shows the result of r = 3. In general, it doesn’t make much
sense to go deeper than three levels, since the differences are barely notice-
able at that point.

Figure 4-7: Reflections limited to three recursive calls (r = 3). Now
we can see the reflections of the reflections of the reflections
of the spheres.

We’ll make another distinction. “Reflectiveness” doesn’t have to be an
all-or-nothing proposition; objects may be only partially reflective. We’ll as-
sign a number between 0 and 1 to every surface, specifying how reflective it
is. Then we’ll compute the weighted average of the locally illuminated color
and the reflected color using that number as the weight.

Finally, what are the parameters for the recursive call to TraceRay?

e The ray starts at the surface of the object, P.

e The direction of the reflected ray is the direction of the incoming
ray bouncing off P; in TraceRay we have 13, the direction of the in-
coming ray towards P, so the direction of the reflected ray is =D re-
flected with respect to N.

* Similar to what happened with the shadows, we don’t want objects
to reflect themselves, SO t,,;, = €.

Shadows and Reflections 59

60

Chapter 4

* We want to see objects reflected, no matter how far away they are,
SO lypgx = T0OO.

e The recursion limit is one less than the current recursion limit (to
avoid an infinite recursion).

Now we’re ready to turn this into actual pseudocode.

Rendering with Reflections

Let’s add reflections to our raytracer. First, we modify the scene definition
by adding a reflective property to each surface, describing how reflective it
is, from 0.0 (not reflective at all) to 1.0 (a perfect mirror):

sphere {
center = (0, -1, 3)
radius = 1

color = (255, 0, 0) # Red
specular = 500 # Shiny
reflective = 0.2 # A bit reflective

}
sphere {
center = (-2, 1, 3)
radius = 1
color = (0, 0, 255) # Blue
specular = 500 # Shiny
reflective = 0.3 # A bit more reflective
}
sphere {
center = (2, 1, 3)
radius = 1
color = (0, 255, 0) # Green
specular = 10 # Somewhat shiny
reflective = 0.4 # Even more reflective
}
sphere {
color = (255, 255, 0) # Yellow
center = (0, -5001, 0)
radius = 5000
specular = 1000 # Very shiny
reflective = 0.5 # Half reflective
}

We already use the “reflect ray” formula during the computation of
specular reflections, so we can factor it out. It takes a ray R and a normal
N and returns R reflected with respect to V.

ReflectRay(R, N) {
return 2 * N * dot(N, R) - R;

The only change we need to make to ComputelLighting is replacing the re-
flection equation with a call to this new ReflectRay.

There’s a small change in the main method—we need to pass a recursion
limit to the top-level TraceRay call:

color = TraceRay(0, D, 1, inf, recursion_depth)

We can set the initial value of recursion_depth to a sensible value such as
3, as discussed previously.

The only significant changes happen near the end of TraceRay, where we
compute the reflections recursively. You can see the changes in Listing 4-4.

TraceRay(0, D, t_min, t_max, recursion_depth) {
closest_sphere, closest t = ClosestIntersection(0, D, t _min, t_max)

if closest_sphere == NULL {
return BACKGROUND_COLOR

// Compute local color

P =0+ closest_ t *D

N = P - closest_sphere.center

N = N / length(N)

local color = closest _sphere.color * ComputelLighting(P, N, -D, closest sphere.specular)

// If we hit the recursion limit or the object is not reflective, we're done
® r - closest_sphere.reflective
if recursion depth <= 0 or r <= 0 {
return local color

// Compute the reflected color
R = ReflectRay(-D, N)
O reflected color = TraceRay(P, R, 0.001, inf, recursion depth - 1)

® return local color * (1 - r) + reflected color * r

}

Listing 4-4: The raytracer pseudocode, now with reflections

Shadows and Reflections 61

62

The changes to the code are surprisingly simple. First, we check whether
we need to compute reflections at all @. If the sphere is not reflective or we
hit the recursion limit, we’re done, and we can just return the sphere’s own
color.

The most interesting change is the recursive call ®; TraceRay calls itself,
with the appropriate parameters for reflection and, importantly, decrement-
ing the recursion depth counter; this, combined with the check @, prevents
an infinite loop.

Finally, once we have the sphere’s local color and the reflected color, we
blend them together ®, using “how reflective this sphere is” as the blending
weight.

I'll let the results speak for themselves. Check out Figure 4-8.

Figure 4-8: The raytraced scene, now with reflections

You can find a live implementation of this algorithm at https.//
gabrielgambetia.com/cgfs/reflections-demo.

Summary

Chapter 4

In the previous chapters, we developed a basic framework to render a 3D
scene on a 2D canvas, modeling the way a ray of light interacts with the sur-
face of an object. This gave us a simple initial representation of the scene.
In this chapter, we extended this framework to model how different ob-
jects in the scene interact not only with rays of light, but with each other—by

https://gabrielgambetta.com/cgfs/reflections-demo
https://gabrielgambetta.com/cgfs/reflections-demo

casting shadows over each other and by reflecting each other. As a result,
the rendered scene looks significantly more realistic.

In the next chapter, we’ll briefly discuss different ways to extend this
work, from representing objects other than spheres to practical considera-
tions such as rendering performance.

Shadows and Reflections

63

EXTENDING THE RAYTRACER

We'll conclude the first part of the book
with a quick discussion of several interest-

ing topics that we haven’t yet covered: plac-
ing the camera anywhere in the scene, perfor-
mance optimizations, primitives other than spheres,
modeling objects using constructive solid geometry,
supporting transparent surfaces, and supersampling.
We won’t implement all of these changes, but I encour-
age you to give them a try! The preceding chapters,
plus the descriptions offered below, give you solid foun-
dations to explore and implement them by yourself.

Arbitrary Camera Positioning

At the very beginning of the discussion about raytracing we made three im-
portant assumptions: that the camera was fixed at (0, 0, 0), that it was point-

66

Chapter 5

ing to Z_;, and that its “up” direction was Y+. In this section, we’ll lift these
restrictions so we can put the camera anywhere in the scene and point it in
any direction.

Let’s start with the camera position. You may have noticed that O is
used exactly once in all the pseudocode: as the origin of the rays coming
from the camera in the top-level method. If we want to change the position
of the camera, the only thing we need to do is to use a different value for O
and we’re done.

Does the change in position affect the direction of the rays? Not at all.
The direction of the rays is the vector that goes from the camera to the pro-
jection plane. When we move the camera, the projection plane moves to-
gether with it, so their relative positions don’t change. The way we have writ-
ten CanvasToViewport is consistent with this idea.

Let’s turn our attention to the camera orientation. Suppose you have a
rotation matrix that represents the desired orientation of the camera. The
position of the camera doesn’t change if you just rotate the camera around,
but the direction it’s looking toward does; it undergoes the same rotation as
the whole camera. So if you have the ray direction D and the rotation matrix
R, the rotated D is just R - D.

In summary, the only function that needs to change is the main function
we wrote back in Listing 2-2. Listing 5-1 shows the updated function.

for x in [-Cw/2, Cw/2] {
for y in [-Ch/2, Ch/2] {
@ D = camera.rotation * CanvasToViewport(x, y)
® color = TraceRay(camera.position, D, 1, inf)
canvas.PutPixel(x, y, color)

}

Listing 5-1: The main loop, updated to support an arbitrary camera position and orienta-
tion

We apply the camera’s rotation matrix @, which describes its orientation
in space, to the direction of the ray we’re about to trace. Then we use the
camera position as the starting point of the ray .

Figure 5-1 shows what our scene looks like when rendered from a differ-
ent position and with a different camera orientation.

Figure 5-1: Our familiar scene, rendered with a different camera
position and orientation

You can find a live implementation of this algorithm at https:;//
gabrielgambetta.com/cgfs/camera-demo.

Performance Optimizations

The preceding chapters focused on the clearest possible way to explain and
implement the different features of a raytracer. As a result, it is fully func-
tional but not particularly fast. Here are some ideas you can explore by your-
self to make the raytracer faster. Just for fun, measure before-and-after times
for each of these. You’ll be surprised by the results!

Parallelization

The most obvious way to make a raytracer faster is to trace more than one
ray at a time. Since each ray leaving the camera is independent of every
other ray and the scene data is read-only, you can trace one ray per CPU
core without many penalties or much synchronization complexity. In fact,
raytracers belong to a class of algorithms called embarrassingly parallelizable,
precisely because their very nature makes them extremely easy to parallelize.
Spawning a thread per ray is probably not a good idea, though; the over-
head of managing potentially millions of threads would probably negate
the speed-up you’d obtain. A more sensible idea would be to create a set

Extending the Raytracer 67

https://gabrielgambetta.com/cgfs/camera-demo
https://gabrielgambetta.com/cgfs/camera-demo

of “tasks,” each of them responsible for raytracing a section of the canvas
(a rectangular area, down to a single pixel), and dispatch them to worker
threads running on the physical cores as they become available.

Caching Immutable Valves

Caching is a way to avoid repeating the same computation over and over
again. Whenever there’s an expensive computation and you expect to use
the result of this computation repeatedly, it might be a good idea to store
(cache) this result and just reuse it next time it’s needed, especially if this
value doesn’t change often.

Consider the values computed in IntersectRaySphere, where a raytracer
typically spends most of its time:

dot(D, D)
2 * dot(0C, D)
dot(0C, OC) - r * 1

n
n

Different values are immutable during different periods of time.

Once you load the scene and you know the size of the spheres, you
can compute r * r. That value won’t change unless the size of the spheres
changes.

Some values are immutable for an entire frame, at the very least. One
such value is dot(0C, 0C) and it only needs to change between frames if the
camera or a sphere moves. (Note that shadows and reflections trace rays that
don’t start at the camera, so some care is needed to make sure the cached
value isn’t used in that case.)

Some values don’t change for an entire ray. For example, you can com-
pute dot(D, D) in ClosestIntersection and pass it to IntersectRaySphere.

There are many other computations that can be reused. Use your imag-
ination! Not every cached value will make things faster overall, however, be-
cause sometimes the bookkeeping overhead might be higher than the time
saved. Always use benchmarks to evaluate whether an optimization is actu-
ally helping.

Shadow Optimizations

When a point of a surface is in shadow because there is another object in the
way, it’s quite likely that the point right next to it will also be in the shadow
of the same object (this is called shadow coherence). You can see an example
of this in Figure 5-2.

68 Chapter 5

Figure 5-2: Points that are close together are likely to be
in the shadow of the same object.

When searching for objects between the point and the light, to deter-
mine whether the point is in shadow, we’d normally check for intersections
with every other object. However, if we know that the point immediately
next to it is in the shadow of a specific object, we can check for intersections
with that object first. If we find one, we’re done and we don’t need to check
every other object! If we don’t find intersections with that object, we just
revert to checking every object.

In the same vein, when looking for ray-object intersections to determine
whether a point is in shadow, you don’t really need the closest intersection;
it’s enough to know that there’s at least one intersection, because that will be
enough to stop the light from reaching the point! So you can write a special-
ized version of ClosestIntersection that returns as soon as it finds any inter-
section. You also don’t need to compute and return closest_t; instead, you
can return just a Boolean value.

Spatial Structures

Computing the intersection of a ray with every sphere in the scene is some-
what wasteful. There are many data structures that let you discard entire
groups of objects at once without having to compute the intersections indi-
vidually.

Suppose you have several spheres close to each other. You can compute
the center and radius of the smallest sphere that contains all these spheres.
If a ray doesn’t intersect this bounding sphere, you can be sure that it doesn’t

Extending the Raytracer 69

70

intersect any of the spheres it contains, at the cost of a single intersection
test. Of course, if it does, you still need to check whether it intersects any of
the spheres it contains.

You could go further and have several levels of bounding spheres (that
is, groups of groups of spheres), forming a hierarchy that needs to be tra-
versed all the way to the bottom only when there’s a good chance that one of
the actual spheres will be intersected by a ray.

While the exact details of this family of techniques are outside the scope
of this book, you can find more information under the name bounding vol-
wme hierarchy.

Subsampling

Here’s an easy way to make your raytracer N times faster: compute N times
fewer pixels!

For each pixel in the canvas, we trace one ray through the viewport to
sample the color of the light coming from that direction. If we had fewer rays
than pixels, we’d be subsampling the scene. But how can we do this and still
render the scene correctly?

Suppose you trace the rays for the pixels (10, 100) and (12, 100), and
they happen to hit the same object. You can reasonably assume that the ray
for the pixel (11, 100) will also hit the same object, so you can skip the initial
search for intersections with all the objects in the scene and jump straight to
computing the color at that point.

If you skip every other pixel in both the horizontal and vertical direc-
tions, you could be doing up to 75 percent fewer primary ray-scene intersec-
tion computations—that’s a 4x speedup!

Of course, you may well miss a very thin object; this is an “impure” op-
timization, in the sense that, unlike the ones discussed before, it results in
an image that closely resembles, but is not guaranteed to be identical to, the
image without the optimization. In a way, it’s “cheating” by cutting corners.
The trick is to know what corners can be cut while maintaining satisfactory
results; in many areas of computer graphics, what matters is the subjective
quality of the results.

Supporting Other Primitives

Chapter 5

In the previous chapters, we’ve used spheres as primitives because they’re
mathematically easy to manipulate; that is, the equations to find the inter-
sections between rays and spheres are relatively simple. But once you have
a basic raytracer than can render spheres, adding support to render other
primitives doesn’t require much additional work.

Note that TraceRay needs to be able to compute just two things for a
ray and any given object: the value of ¢ for the closest intersection between
them and the normal at that intersection. Everything else in the raytracer is
object-independent!

Triangles are a good primitive to support. A triangle is the simplest pos-
sible polygon, so you can build any other polygon out of triangles. They’re
mathematically easy to manipulate, so they’re a good way to represent ap-
proximations of more complex surfaces.

To add triangle support to the raytracer, you only need to change
TraceRay. First, you compute the intersection between the ray (given by its
origin and direction) and the plane that contains the triangle (given by its
normal and its distance from the origin).

Since planes are infinitely big, rays will almost always intersect any given
plane (except if they’re exactly parallel). So the second step is to determine
whether the ray-plane intersection is actually inside the triangle. There are
many ways to do this, including using barycentric coordinates or using cross-
products to check whether the point is “on the inside” with respect to each
of the three sides of the triangle.

Once you have determined that the point is inside the triangle, the nor-
mal at the intersection is just the normal of the plane. Have TraceRay return
the appropriate values and no further changes will be required!

Constructive Solid Geometry

Suppose we want to render objects more complicated than spheres or
curved objects that are difficult to model accurately using a set of triangles.
Two good examples are lenses (like the ones in magnifying glasses) and the
Death Star (that’s no moon...).

We can easily describe these objects in plain language. A magnifying
glass looks like two slices of a sphere glued together; the Death Star looks
like a sphere with a smaller sphere taken out of it.

We can express this more formally as the result of applying set opera-
tions (such as union, intersection, or difference) to other objects. Contin-
uing with our examples above, a lens can be described as the intersection
of two spheres and the Death Star as a big sphere from which we subtract a
smaller sphere (see Figure 5-3).

Extending the Raytracer 71

72

Chapter 5

A B C

Figure 5-3: Constructive solid geometry in action. A N B gives us a lens. C - D gives us
the Death Star.

You might be thinking that computing Boolean operations of solid ob-
jects is a very tricky geometrical problem. And you’d be completely correct!
Fortunately, it turns out that constructive solid geometry lets us render the re-
sults of set operations between objects without ever having to explicitly com-
pute these results!

How can we do this in our raytracer? For every object, you can compute
the points where the ray enters and exits the object; in the case of a sphere,
for example, the ray enters at min(t1, to) and exits at max(t1, to). Suppose you
want to compute the intersection of two spheres; the ray is inside the inter-
section when it’s inside both spheres, and it’s outside when it’s outside either
sphere. In the case of the subtraction, the ray is inside when it’s inside the
first object but not the second one. For the union of two objects, the ray is
inside when it’s inside either of the objects.

More generally, if you want to compute the intersection between a ray
and the object A) B (where () is any set operation), you first compute the
intersection between the ray and A and B separately, which gives you the
ranges of ¢ that are “inside” for each object, R4 and Rp. Then you compute
R4 (O Rp, which is the “inside” range for A () B. Once you have this, the
closest intersection between the ray and A () B is the smallest value of ¢ that
is both in the “inside” range of the object, and between ¢,,;, and ¢;4x. Fig-
ure 5-4 shows the inside range for the union, intersection, and subtraction of
two spheres.

t Lo t
A — ;

p —H—— e ——————————
AU B — e e—————————————
AnB —1 =t }

A-p ————— }

Figure 5-4: Union, intersection, and subtraction
of two spheres

The normal at the intersection is either the normal of the object that
produced the intersection or its opposite, depending on whether you’re
looking at the “outside” or “inside” of the original object.

Of course, A and B don’t have to be primitives; they can be the result
of set operations themselves! If you implement this cleanly, you don’t even
need to know what A and B are, as long as you can get intersections and nor-
mals out of them. This way you can take three spheres and compute, for ex-
ample, (AUB)N C.

Transparency

So far we have rendered every object as if it were fully opaque, but this
doesn’t need to be the case. We can render partially transparent objects, like
a fishbowl.

Implementing this is quite similar to implementing reflection. When a
ray hits a partially transparent surface, you compute the local and reflected
color as before, but you also compute an additional color—the color of the
light coming through the object, obtained with another call to TraceRay. Then
you blend this color with the local and reflected colors, depending on how
transparent the object is, much in the same way we did when computing ob-
ject reflections.

Extending the Raytracer 73

74

Chapter 5

Refraction

In real life, when a ray of light goes through a transparent object, it changes
direction (this is why when you submerge a straw in a glass of water, it looks
“broken”). More precisely, a ray of light changes direction when it’s go-
ing through a material (such as air) and enters a different material (such as
water).

The way the direction changes depends on a property of each material,
called its refraction index, according to the following equation, called Snell’s
Law:

sin(av;) mo

sin(ag)

Here, o7 and a9 are the angles between the ray and the normal before
and after crossing the surface, and n and ng are the refraction indices of
the material outside and inside objects.

For example, n,;, is approximately 1.0, and 7qsr is approximately 1.33.
So for a ray of light entering water at a 60° angle, we have

.S
a9 = arcsin(

This example is shown in Figure 5-5.

N
. A
..',...... 600
Air
Water
40.6° ™

.._‘

Figure 5-5: A ray of light is refracted (changes
direction) as it leaves air and enters water.

At the implementation level, each ray would have to carry an additional
piece of information: the refraction index of the material it is currently go-
ing through. When the ray intersects a partially transparent object, you com-
pute the new direction of the ray from that point, based on the refraction

indices of the current material and the new material, and then proceed as
before.

Stop for a moment to consider this: if you implement constructive solid
geometry and transparency, you can model a magnifying glass (the inter-
section of two spheres) that will behave like a physically correct magnitfying
glass!

Supersampling

Supersampling is more or less the opposite of subsampling. In this case
you’re looking for accuracy instead of performance. Suppose the rays cor-
responding to two adjacent pixels hit different objects. You would paint each
pixel with the corresponding colors.

But remember the analogy that got us started: each ray is supposed to
determine the “representative” color for each square of the “grid” we’re look-
ing through. By using a single ray per pixel, we’re arbitrarily deciding that
the color of the ray of light that goes through the middle of the square is
representative of the whole square, but that may not be true.

The way to solve this is just to trace more rays per pixel—4, 9, 16, as
many as you want—and then average them to get the color for the pixel.

Of course, this makes your raytracer 4, 9, or 16 times slower, for the
exact same reasons why subsampling made it IV times faster. Fortunately,
there’s a middle ground. You can assume object properties change smoothly
over their surface, so shooting four rays per pixel that hit the same object
at very slightly different positions may not improve the scene much. So you
can start with one ray per pixel and compare adjacent rays: if they hit differ-
ent objects or if the color differs by more than a certain threshold, you apply
pixel subdivision to both.

Summary

In this chapter, we have briefly introduced several ideas you can explore by
yourself. These modify the basic raytracer we’ve been developing in new and
interesting ways—making it more efficient, able to represent more complex
objects, or modeling rays of light in a way that better approximates our phys-
ical world.

This first part of the book should be proof that raytracers are beautiful
pieces of software that can produce stunningly beautiful images using noth-
ing but straightforward, intuitive algorithms and simple math.

Sadly, this purity comes at a cost: performance. While there are numer-
ous way to optimize and parallelize raytracers, as discussed in this chapter,
they’re still too computationally expensive for real-time performance; and
while hardware gets faster every year, some applications demand pictures

Extending the Raytracer 75

76

Chapter 5

100 times faster—with no loss in quality. Of all these applications, games
are the most demanding: we expect picture-perfect images drawn at least

60 times per second. Raytracers just don’t cut it.
How have videogames been doing it since the early 90s, then?
The answer lies in a completely different family of algorithms that we’ll

explore in the second part of this book.

PART Ii

LINES

In Part I of this book, we studied raytrac-
ing extensively and developed a raytracer

that could render our test scene with accu-

rate lighting, material properties, shadows, and
reflection using relatively simple algorithms and math.
This simplicity comes at a cost: performance. While
non-real-time performance is fine for certain applica-
tions, such as architectural visualization or visual ef-
fects for movies, it’s not enough for other applications,
such as video games.

In this part of the book, we’ll explore an entirely different set of algo-
rithms that favor performance over mathematical purity.

Our raytracer starts from the camera and explores the scene through
the viewport. For every pixel of the canvas, we answer the question, “Which
object of the scene is visible here?” Now we’ll follow an approach that is, in some
sense, the opposite: for every object in the scene, we’ll try to answer the
question “In which parts of the canvas will this object be visible?”

80

It turns out we can develop algorithms that answer this new question
much faster than raytracing could, as long as we’re willing to make some ac-
curacy trade-offs. Later, we’ll explore how to use these fast algorithms to
achieve results with a quality comparable to that of a raytracer.

We’ll start from scratch again: we have a canvas of dimensions C,, and
Cp, and we can set the color of individual pixels with PutPixel(), but nothing
else. Let’s explore how to draw the simplest possible element on the canvas:
a line between two points.

Describing Lines

Suppose we have two canvas points, Py and Pq, with coordinates (x¢, y9) and
(x1,y1) respectively. How can we draw the straight line segment between P
and Py?

Let’s start by representing a line with parametric coordinates, just as
we did with rays before (in fact, you can think of “rays” as lines in 3D). Any
point P on the line can be obtained by starting at Py and moving some dis-
tance along the direction from P to Py:

P=Py+1(P-Py)

We can decompose this equation into two, one for each coordinate:
x=x+1-(x1~x0)
y=yo+t-(y170)

Let’s take the first equation and solve for :

x=xp+1-(x1 —xp)

x—x9 =1-(x1 —xp)

X~ X0 =
X1~ X0

We can now plug this expression for ¢ into the second equation:

y=y0+t-(y1~y0)

X~ X

y=yo+x1 "o “(y1 = 0)

Chapter 6

Rearranging it a bit:

Y1 7)o
= +(x—xn) -
y =50+ (x~xp) —
Notice that % is a constant that depends only on the endpoints of the
segment; let’s call it . So we can rewrite the equation above as

y=yo+a-(x=x)

What is a? According to the way we’ve defined it, it measures the change
in the y coordinate per unit change in the x coordinate; in other words, it’s a
measure of the slope of the line.

Let’s go back to the equation. Distributing the multiplication:

Yy =9yo *tax - ax

Grouping the constants:

y=ax+(yo - axgp)

Again, (yo — axp) depends only on the endpoints of the segment; let’s call it b.
Finally we get

y=ax+b

This is the standard formulation of a linear function, which can be used
to represent almost any line. When we solved for ¢, we added a division by
x1 — xo without thinking what happens if x; = xy. We can’t divide by zero,
which means this formulation can’t represent lines with x; = xp—that is,
vertical lines.

To work around this issue, we’ll just ignore vertical lines for now and
figure out how to deal with them later.

Drawing Lines

We now have a way to get the value of y for each value of x we’re interested
in. This gives us a pair (x, y) that satisfies the equation of the line.

We can now write a first approximation of a function that draws a line
segment from P to P;. Let x0 and yo be the x and y coordinates of P, re-
spectively, and x1 and y1 those of P. Assuming x(< x1, we can go from x to
x1, computing the value of y for each value of x, and drawing a pixel at these
coordinates:

DrawLine(Po, P1, color) {
a = (y1 -yo) / (x1 - x0)
b=y0-a*xo

Lines 81

82

Chapter 6

for x = x0 to x1 {
y=a*x+b
canvas.PutPixel(x, y, color)

Note that the division operator / is expected to perform real division,
not integer division. This is despite x and y being integers in this context, as
they represent coordinates of pixels on the canvas.

Also note that we consider for loops to include the last value of the
range. In C, C++, Java, and JavaScript, among others, this would be written
as for (x = x0; x <= x1; ++x). We will be using this convention throughout
this book.

This function is a direct, naive implementation of the equation above. It
works, but can we make it faster?

We aren’t calculating values of y for any arbitrary x. On the contrary,
we’re calculating them only at integer increments of x and we’re doing so in
order. Right after calculating y(x), we calculate y(x + 1):

yx)=ax+b

yx+1l)=a-(x+1)+b

We can manipulate that second expression a bit:

yx+1)=ax+a+b

yx+1)=(ax+b)+a

yx+1)=9(x)+a

This shouldn’t be surprising; after all, the slope a is the measure of how
much y changes when x increases by 1, which is exactly what we’re doing
here.

This means we can compute the next value of y just by taking the previ-
ous value of y and adding the slope; no per-pixel multiplication is needed,
which makes the function faster. At the beginning there’s no “previous value
of'y,” so we start at (xg,y9). Then we keep adding 1 to x and a to y until we
get to xq.

Again assuming that xy < x1, we can rewrite the function as follows:

DrawLine(Po, P1, color) {
a = (y1 -yo) / (x1 - x0)
y =Yyo
for x = x0 to x1 {
canvas.PutPixel(x, y, color)

y=y+a

So far we’ve been assuming that xy < x1. There’s an easy workaround to
support lines where that doesn’t hold: since the order in which we draw the
pixels doesn’t matter, if we get a right-to-left line, we can just swap Po and P1
to transform it into the left-to-right version of the same line, and draw it as
before:

DrawLine(P0, P1, color) {
// Make sure x0 < x1
if x0 > x1 {

swap(Po, P1)

(y1 - yo) / (x1 - x0)

= yo

for x = x0 to x1 {
canvas.PutPixel(x, y, color)

y=y+a

<
I

Let’s use our function to draw a couple of lines. Figure 6-1 shows the
line segment (-200, -100) - (240, 120), and Figure 6-2 shows a close-up of the
line.

Lines 83

84

Chapter 6

Figure 6-1: A straight line

Figure 6-2: Zooming in on the straight line

The line appears jagged because we can only draw pixels on integer
coordinates, and mathematical lines actually have zero width; what we’re
drawing is a quantized approximation of the ideal line from (-200,-100) -
(240, 120). There are ways to draw prettier approximations of lines (you may
want to look into MSAA, FXAA, SSAA, and TAA as possible entry points to
an interesting set of rabbit holes). We won’t go there for two reasons: (1) it’s
slower, and (2) our goal is not to draw pretty lines but to develop some basic
algorithms to render 3D scenes.

Let’s try another line, (=50, -200) - (60, 240). Figure 6-3 shows the result
and Figure 6-4 shows the corresponding close-up.

Figure 6-3: Another straight line with a higher slope

Figure 6-4: Zooming in on the second straight line

Oops. What happened?

The algorithm did exactly what we told it to; it went from left to right,
computed one value of y for each value of x, and painted the correspond-
ing pixel. The problem is that it computed one value of y for each value of x,
while in this case we actually need several values of y for some values of x.

Lines 85

86

This happens because we chose a formulation where y = f{x); in fact, it’s
the same reason why we can’t draw vertical lines—an extreme case where all
the values of y correspond to the same value of x.

Drawing Lines with Any Slope

Chapter 6

Choosing y = f(x) was an arbitrary choice; we could equally have chosen to
express the line as x = f{y). Reworking all the equations by exchanging x and
v, we get the following algorithm:

DrawLine(Po, P1, color) {
// Make sure yo < y1
if yo > y1 {

swap(Po, P1)

(x1 - x0)/(y1 - yo)
= X0

X
n

for y = yo to y1 {
canvas.PutPixel(x, y, color)

X =X+a

This is identical to the previous DrawLine, except the x and y computa-
tions have been exchanged. This one can handle vertical lines and will draw
(0,0)-(50,100) correctly; but of course, it can’t handle horizontal lines at all,
or draw (0, 0) - (100, 50) correctly! What to do?

We can just keep both versions of the function and choose which one
to use depending on the line we’re trying to draw. And the criterion is quite
simple; does the line have more different values of x than different values of
y? If there are more values of x than y, we use the first version; otherwise, we
use the second.

Listing 6-1 shows a version of DrawLine that handles all the cases.

DrawLine(Po, P1, color) {

dx = x1 - x0

dy = y1 - yo

if abs(dx) > abs(dy) {
// Line is horizontal-ish
// Make sure x0 < x1
if x0 > x1 {

swap(Po, P1)

}
a = dy/dx

y = y0

for x = x0 to x1 {
canvas.PutPixel(x, y, color)
y=y+a

}

} else {

// Line is vertical-ish

// Make sure yo < y1

if yo > y1 {
swap(Po, P1)

dx/dy
X0

X L =
Il

for y = yo to y1 {
canvas.PutPixel(x, y, color)

X=X+a

}

Listing 6-1: A version of DrawLine that handles all the cases

This certainly works, but it isn’t pretty. There’s a lot of code duplication,
and the logic for selecting which function to use, the logic to compute the
function values, and the pixel drawing itself are all intertwined. Surely we
can do better!

The Linear Interpolation Function

We have two linear functions y = f(x) and x = f{y). To abstract away the fact
that we’re dealing with pixels, let’s write it in a more generic way as d = f{i),
where i is the independent variable, the one we choose the values for, and d is
the dependent variable, the one whose value depends on the other and which
we want to compute. In the horizontal-ish case, x is the independent variable
and y is the dependent variable; in the vertical-ish case, it’s the other way
around.

Of course, any function can be written as d = f{7). We know two more
things that completely define our function: the fact that it’s linear and two
of its values—that is, dy = f{ig) and d; = f(i1). We can write a simple function
that takes these values and returns a list of all the intermediate values of d,
assuming as before that ¢y < ¢1:

Interpolate (io, do, i1, d1) {
values = []
a = (d1 - do) / (i1 - io)

Lines 87

838

Chapter 6

d =do

for i = i0 to i1 {
values.append(d)
d=d+a

}

return values

This function has the same “shape” as the first two versions of DrawLine,
but the variables are called i and d instead of x and y, and instead of drawing
pixels, this one stores the values in a list.

Note that the value of d corresponding to iy is returned in values[0], the
value for ig + 1 in values[1], and so on; in general, the value for i, is returned
in values[i n - i_0], assuming ¢, is in the range [i, 71].

There’s a corner case we need to consider: we may want to compute d =
/(@) for a single value of i—that is, when ig = ¢1. In this case we can’t even
compute a, so we’ll treat it as a special case:

Interpolate (io, do, i1, d1) {
if i0 == i1 {
return [do]

}

values = []

a = (d1 - do) / (i1 - io0)
d = do

for i = i0 to i1 {
values.append(d)
d=d+a

}

return values

As an implementation detail, and for the remainder of this book, the
values of the independent variable 7 are always integers, as they represent
pixels, while the values of the dependent variable d are always floating point
values, as they represent values of a generic linear function.

Now we can write DrawLine using Interpolate (Listing 6-2).

DrawLine(Po, P1, color) {
if abs(x1 - x0) > abs(y1 - yo) {
// Line is horizontal-ish
// Make sure x0 < x1
if x0 > x1 {
swap(Po, P1)

ys = Interpolate(x0, yo, x1, y1)
for x = x0 to x1 {
canvas.PutPixel(x, ys[x - x0], color)
}
} else {
// Line is vertical-ish
// Make sure yo < y1
if yo » y1 {
swap(Po, P1)
}
xs = Interpolate(yo, x0, y1, x1)
for y = yo to y1 {
canvas.PutPixel(xs[y - yo], y, color)

}

Listing 6-2: A version of DrawLine that uses Interpolate

This DrawLine can handle all cases correctly (Figure 6-5).

Figure 6-5: The refactored algorithm handles all cases correctly.

You can see a live demo of this refactored algorithm at https://
gabrielgambetta.com/cgfs/lines-demo.

While this version isn’t much shorter than the previous one, it cleanly
separates the computation of the intermediate values of y and x from the

Lines 89

https://gabrielgambetta.com/cgfs/lines-demo
https://gabrielgambetta.com/cgfs/lines-demo

90

decision of which is the independent variable and from the pixel-drawing
code itself.

It might come as a surprise that this line algorithm is not the best or the
fastest there is; that distinction probably belongs to Bresenham’s Algorithm.
The reason to present this algorithm is twofold. First, it is easier to under-
stand, which is an overriding principle in this book. Second, it gave us the
Interpolate function, which we will use extensively in the rest of this book.

Summary

Chapter 6

In this chapter, we’ve taken the first steps to building a rasterizer. Using
the only tool we have, PutPixel, we’ve developed an algorithm that can draw
straight line segments on the canvas.

We have also developed the Interpolate helper method, a way to effi-
ciently compute values of a linear function. Make sure you understand it
well before proceeding, because we’ll be using it a lot.

In the next chapter, we’ll use Interpolate to draw more complex and in-
teresting shapes on the canvas: triangles.

FILLED TRIANGLES

In the previous chapter, we took our first
steps toward drawing simple shapes—

namely, straight line segments—using only
PutPixel and an algorithm based on simple

math. In this chapter, we’ll reuse some of the math to

draw something more interesting: a filled triangle.

Drawing Wireframe Triangles

We can use the DrawLine method to draw the outline of a triangle:

DrawWireframeTriangle (Po, P1, P2, color) {
DrawLine(Po, P1, color);
DrawLine(P1, P2, color);
DrawLine(P2, PO, color);

This kind of outline is called a wireframe, because it looks like a triangle
made of wires, as you can see in Figure 7-1.

Figure 7-1: A wireframe triangle with vertices (-200,-250), (200,50, and (20,250)

This is a promising start! Next we’ll explore how to fill that triangle with
a color.

Drawing Filled Triangles

We want to draw a triangle filled with a color of our choice. As is often the
case in computer graphics, there’s more than one way to approach this prob-
lem. We’ll draw filled triangles by thinking of them as a collection of hori-
zontal line segments that look like a triangle when drawn together. Figure 7-
2 shows what one such triangle would look like if we could see the individual
segments.

Figure 7-2: Drawing a filled triangle using horizontal segments

92 Chapter 7

The following is a very rough first approximation of what we want to do:

for each horizontal line y between the triangle's top and bottom
compute x_left and x_right for this y
DrawLine(x_left, y, x right, y)

Let’s start with “between the triangle’s top and bottom.” A triangle is
defined by its three vertices Py, P1, and Ps. If we sort these points by increas-
ing value of y, such that yg < y; < y9, then the range of values of y occupied
by the triangle is [yg, y2]:

if y1 < yo { swap(P1, PO) }
if y2 < yo { swap(P2, P0) }
if y2 < y1 { swap(P2, P1) }

Sorting the vertices this way makes things easier: after doing this, we can
always assume P is the lowest point of the triangle and Ps is the highest, so
we won'’t have to deal with every possible ordering.

Next we have to compute the x_left and x_right arrays. This is slightly
tricky, because the triangle has three sides, not two. However, consider-
ing only the values of y, we always have a “tall” side from Py to Py, and two
“short” sides from Py to P; and P to Ps.

There’s a special case when yg = y1 or y; = yo—that is, when one of the
sides of the triangle is horizontal. When this happens, the two other sides
have the same height, so either could be considered the “tall” side. Should
we choose the right side or the left side? Fortunately, it doesn’t matter; the
algorithm will support both left-to-right and right-to-left horizontal lines, so
we can stick to our definition that the “tall” side is the one from Py to Ps.

The values for x_right will come either from the tall side or from join-
ing the short sides; the values for x_left will come from the other set. We’ll
start by computing the values of x for the three sides. Since we’ll be draw-
ing horizontal segments, we want exactly one value of x for each value of y;
this means we can compute these values by using Interpolate, with y as the
independent variable and x as the dependent variable:

x01 = Interpolate(yo, x0, y1, x1)
x12 = Interpolate(y1, x1, y2, x2)
x02 = Interpolate(yo, x0, y2, x2)

The x values for one of the sides are in x02; the values for the other side
come from the concatenation of xo1 and x12. Note that there’s a repeated
value in x01 and x12: the x value for y; is both the last value of x01 and the

Filled Triangles 93

94

Chapter 7

first value of x12. We just need to get rid of one of them (we arbitrarily
choose the last value of x01), and then concatenate the arrays:

remove_last(xo01)
X012 = x01 + x12

We finally have x02 and x012, and we need to determine which is x_left
and which is x_right. To do this, we can choose any horizontal line (for ex-
ample, the middle one) and compare its x values in x02 and xo12: if the x
value in x02 is smaller than the one in x012, then we know x02 must be x_left;
otherwise, it must be x_right.

m = floor(x02.length / 2)
if x02[m] < x012[m] {

x_left = x02

x_right = x012
} else {

x_left = x012

x_right = x02

Now we have all the data we need to draw the horizontal segments. We
could use DrawLine for this. However, DrawLine is a very generic function, and
in this case we’re always drawing horizontal, left-to-right lines, so it’s more ef-
ficient to use a simple for loop. This also gives us more “control” over every
pixel we draw, which will be especially useful in the following chapters.

Listing 7-1 has the completed DrawFilledTriangle.

DrawFilledTriangle (Po, P1, P2, color) {

® // Sort the points so that yo <= y1 <= y2
if y1 < yo { swap(P1, PO) }
if y2 < yo { swap(P2, P0) }
if y2 < y1 { swap(P2, P1) }

® // Compute the x coordinates of the triangle edges
x01 = Interpolate(yo, x0, y1, x1)
x12 = Interpolate(y1, x1, y2, x2)
x02 = Interpolate(yo, x0, y2, x2)

® // Concatenate the short sides
remove_last(x01)
X012 = x01 + x12

® // Determine which is left and which is right
m = floor(x012.length / 2)
if x02[m] < x012[m] {
x_left = x02
x_right = x012
} else {
x_left = x012
x_right = x02

® // Draw the horizontal segments
for y = yo to y2 {
for x = x_left[y - yo] to x_right[y - yo] {
canvas.PutPixel(x, y, color)

}

Listing 7-1: A function to draw filled triangles

Let’s see what’s going on here. The function receives the three vertices
of the triangle as arguments, in any order. Our algorithm needs them to
be in bottom-to-top order, so we sort them that way @. Next, we compute
the x values for each y value of the three sides @, and concatenate the arrays
from the two “short” sides ®. Then we figure out which is x_left and which
is x_right @. Finally, for each horizontal segment between the top and the
bottom of the triangle, we get its left and right x coordinates, and draw the
segment pixel by pixel @.

Figure 7-3 shows the results; for verification purposes, we call
DrawFilledTriangle and then DrawhWireframeTriangle with the same coordinates
but different colors. Verify your results whenever you can—this is a very ef-
fective way to find bugs in the code!

Filled Triangles 95

96

Figure 7-3: A filled triangle, with wireframe edges for verification

You can find a live implementation of this algorithm at https.//
gabrielgambetta.com/cgfs/triangle-demo.

You may notice the black outline of the triangle doesn’t exactly match
the green interior region; this is especially visible in the lower-right edge of
the triangle. This is because DrawLine is computing y = f{x) for that edge but
DrawTriangle is computing x = f{y), and this can produce slightly different re-
sults due to rounding. This is the kind of approximation error we’re willing
to accept in order to make our rendering algorithms fast.

Summary

Chapter 7

In this chapter, we’ve developed an algorithm to draw a filled triangle on
the canvas. This is a step up from drawing line segments. We’ve also learned
to think of triangles as a set of horizontal segments that we can work with
individually.

In the next chapter, we’ll extend the math and the algorithm to draw a
triangle filled with a color gradient; the math and the reasoning behind the
algorithm will be key to the rest of the features developed in this book.

https://gabrielgambetta.com/cgfs/triangle-demo
https://gabrielgambetta.com/cgfs/triangle-demo

SHADED TRIANGLES

In the previous chapter, we developed an
algorithm to draw a triangle filled with a

solid color. Our goal for this chapter is to
draw a shaded triangle—that is, a triangle filled
with a color gradient.

Defining Our Problem

We want to fill the triangle with different shades of a single color. It will look
like Figure 8-1.

We need a more formal definition of what we’re trying to draw. We have
a base color C: for example, 0,255, 0, pure green. We’ll assign a real value &
to each vertex, denoting the intensity of the color at the vertex. % is in the
[0.0, 1.0] range, where 0.0 represents the darkest possible shade (that is,
black) and 1.0 represents the brightest possible shade (that is, the original
color—not white!).

98

Figure 8-1: A shaded triangle

To compute the exact color shade of a pixel given the base color of the
triangle C and the intensity at that pixel &, we’ll multiply channel-wise: C;, =
(Rc - h,G¢ - h, B¢ - h). Therefore h = 0.0 yields pure black, z = 1.0 yields the
original color C, and & = 0.5 yields a color half as bright as the original one.

Computing Edge Shading

Chapter 8

In order to draw a shaded triangle, all we need to do is compute a value of &
for each pixel of the triangle, compute the corresponding shade of the color,
and paint the pixel. Easy!

At this point, however, we only know the values of 4 for the triangle ver-
tices, because we chose them. How do we compute values of & for the rest of
the triangle?

Let’s start with the edges of the triangle. Consider the edge AB. We
know %4 and hg. What happens at M, the midpoint of AB? Since we want
the intensity to vary smoothly from A to B, the value of /); must be between
ha and hpg. Since M is in the middle of AB, why not choose h, to be in the
middle of &4 and hp—that is, their average?

More formally, we have a function 2 = f{(P) that gives each point P an
intensity value k; we know its values at A and B, h(A) = hy and i(B) = hp,
respectively. We want this function to be smooth. Since we know nothing
else about & = f{P), we can choose any function that is compatible with what
we do know, such as a linear function (Figure 8-2).

h(P)

Figure 8-2: A linear function h(P), compatible with what we know about h(A) and h(B)

This is suspiciously similar to the situation in the previous chapter: we
had a linear function x = f{y), we knew the values of this function at the ver-
tices of the triangle, and we wanted to compute values of x along its sides.
We can compute values of & along the sides of the triangle in a very simi-
lar way, using Interpolate with y as the independent variable (the values we
know) and h as the dependent variable (the values we want):

x01 = Interpolate(yo, x0, y1, x1)
ho1 = Interpolate(yo, ho, y1, hi)

x12 = Interpolate(y1, x1, y2, x2)
h12 = Interpolate(y1, hi, y2, h2)

x02 = Interpolate(yo, x0, y2, x2)
ho2 = Interpolate(yo, ho, y2, h2)

Next, we concatenated the x arrays for the “short” sides and then deter-
mined which of x02 and x012 was x_left and which was x_right. Again, we can
do something very similar here for the 4 vectors.

However, we will always use the x values to determine which side is left
and which side is right, and the 4 values will just “follow along.” x and A are
properties of actual points on the screen, so we can’t freely mix-and-match
left- and right-side values.

We can code this as follows:

// Concatenate the short sides
remove_last(x01)

Shaded Triangles 99

100

X012 = x01 + x12

remove_last(ho1)
ho12 = ho1 + h12

// Determine which is left and which is right
m = floor(x012.length / 2)
if x02[m] < x012[m] {

x_left = x02

h_left = ho2

x_right = x012

h_right = ho12
} else {

x_left = x012

h_left = ho12

x_right = x02

h_right = ho2

This is very similar to the relevant section of the code in the previous
chapter (Listing 7-1), except that every time we do something with an x vec-
tor, we do the same with the corresponding h vector.

Computing Interior Shading

Chapter 8

The last step is drawing the actual horizontal segments. For each segment,
we know x_left and x_right, as in the previous chapter; now we also know
h_left and h_right. But this time we can’t just iterate from left to right and
draw every pixel with the base color: we need to compute a value of 4 for
each pixel of the segment.

Again, we can assume A varies linearly with x, and use Interpolate to com-
pute these values. In this case, the independent variable is x, and it goes
from the x_left value to the x_right value of the specific horizontal segment
we’re shading; the dependent variable is &, and its corresponding values for
x_left and x_right are h_left and h_right for that segment:

x_left this y = x_left[y - yo]
h_left_this_y = h_left[y - yo]

x_right_this_y = x_right[y - yo]

h_right_this_y = h_right[y - yo]

h_segment = Interpolate(x_left this_y, h_left this vy,
x_right this y, h_right this y)

Or, expressed in a more compact way:

h_segment = Interpolate(x_left[y - yo], h_left[y - yo],
x_right[y - yo], h_right[y - yo])

Now it’s just a matter of computing the color for each pixel and painting

it! Listing 8-1 shows the complete pseudocode for DrawShadedTriangle.

DrawShadedTriangle (Po, P1, P2, color) {
@ // Sort the points so that yo <= y1 <= y2
if y1 < yo { swap(P1, PO) }
if y2 < yo { swap(P2, Po) }
if y2 < y1 { swap(P2, P1) }

// Compute the x coordinates and h values of the triangle edges
x01 = Interpolate(yo, x0, y1, x1)
ho1 = Interpolate(yo, ho, y1, hi)

x12
h12

Interpolate(y1, x1, y2, x2)
Interpolate(y1, hi, y2, h2)

x02 = Interpolate(yo, x0, y2, x2)
ho2 = Interpolate(yo, ho, y2, h2)

// Concatenate the short sides
remove_last(x01)
X012 = x01 + x12

remove last(ho1)
ho12 = ho1 + h12

// Determine which is left and which is right
m = floor(x012.length / 2)
if x02[m] < x012[m] {

x_left = x02

h_left = ho2

x_right = x012

h_right = ho12
} else {

x_left = x012

h_left = ho12

Shaded Triangles

101

102

x02
ho2

x_right
h_right

// Draw the horizontal segments
O for y = yo to y2 {
x 1 = x_left[y - yo]
X_r = x_right[y - yo]

® h_segment = Interpolate(x_l, h left[y - yo], x r, h_right[y - yo])
for x = x_1 to x_r {
® shaded color = color * h_segment[x - x 1]
canvas.PutPixel(x, y, shaded color)

}

Listing 8-1: A function for drawing shaded triangles

The pseudocode for this function is very similar to that for the function
developed in the previous chapter (Listing 7-1). Before the horizontal seg-
ment loop @, we manipulate the x vectors and the % vectors in similar ways,
as explained above. Inside the loop, we have an extra call to Interpolate &
to compute the & values for every pixel in the current horizontal segment.
Finally, in the inner loop we use the interpolated values of & to compute a
color for each pixel @.

Note that we’re sorting the triangle vertices as before @. However, we
now consider these vertices and their attributes, such as the intensity value
h, to be an indivisible whole; that is, swapping the coordinates of two vertices
must also swap their attributes.

You can find a live implementation of this algorithm at https:;//
gabrielgambetta.com/cgfs/gradient-demo.

Summary

Chapter 8

In this chapter, we’ve extended the triangle-drawing code developed in the
previous chapter to support smoothly shaded triangles. Note that we can still
use it to draw single color triangles by using 1.0 as the value of 4 for all three
vertices.

The idea behind this algorithm is actually more general than it seems.
The fact that 4 is an intensity value has no impact on the “shape” of the al-
gorithm; we assign meaning to this value only at the very end, when we’re
about to call PutPixel. This means we could use this algorithm to compute

https://gabrielgambetta.com/cgfs/gradient-demo
https://gabrielgambetta.com/cgfs/gradient-demo

the value of any attribute of the vertices of the triangle, for every pixel of the

triangle, as long as we assume this value varies linearly on the screen.
We will indeed use this algorithm to improve the visual appearance of
our triangles in the upcoming chapters. For this reason, it’s a good idea to

make sure you really understand this algorithm before proceeding further.

In the next chapter, however, we take a small detour. Having mastered
the drawing of triangles on a 2D canvas, we will turn our attention to the
third dimension.

Shaded Triangles

103

PERSPECTIVE PROJECTION

So far, we have learned to draw 2D trian-
gles on the canvas, given the 2D coordi-
nates of their vertices. However, the goal
of this book is to render 3D scenes. So in this
chapter, we’ll take a break from 2D triangles and focus
on how to turn 3D scene coordinates into 2D canvas

coordinates. We’ll then use this to draw 3D triangles
on the 2D canvas.

Basic Assumptions

Just like we did at the beginning of Chapter 2, we’ll start by defining a cam-
era. We’ll use the same conventions as before: the camerais at O = (0, 0, 0),
looking in the direction of 74, and its “up” vector is Y. We'll also define a
rectangular viewport of size V,, and V, whose edges are parallel to X and Y,
at a distance d from the camera. The goal is to draw on the canvas whatever

106

the camera sees through the viewport. If you need a refresher on these con-
cepts, refer to Chapter 2.

Consider a point P somewhere in front of the camera. We’re interested
in finding P’, the point on the viewport through which the camera sees P, as
shown in Figure 9-1.

Y o P z

ps

X

Figure 9-1: A simple perspective projection
setup. The camera sees P through P’,
which is on the projection plane.

This is the opposite of what we did with raytracing. Our raytracer
started with a point in the canvas, and determined what it could see through
that point; here, we start from a point in the scene and want to determine
where it is seen on the viewport.

Finding P’

Chapter 9

To find P/, let’s look at the setup shown in Figure 9-1 from a different angle,
literally. Figure 9-2 shows a diagram of the setup viewed from the “right,” as

if we were standing on the X axis: Ys points up, Z: points to the right, and X
points at us.

Y Z=d
P
p
O
- 7
| A B
Side view

Figure 9-2: The perspective projection
setup, viewed from the right

In addition to O, P, and P’, this diagram also shows the points A and B,
which help us reason about it.

We know that P, = d because we defined P’ to be a point on the view-
port, and we know the viewport is embedded in the plane Z = d.

We can also see that the triangles OP 'A and OPB are similar, because
their corresponding sides (P A and PB, OP and OP’, and OA and OB) are
parallel. This implies that the proportions of their sides are the same; for

example:
|P'A| _ | PB|
|OA| OB|
From that, we get
PB| - |OA|
P/A — |

The (signed) length of each segment in that equation is a coordinate of
a point we know or we’re interested in: |P'A| = Pé, |PB| = Py, |OA| = P} =
d, and |OB| = P,. If we substitute these in the equation we get

Py-d

p =)
y P,

We can draw a similar diagram, this time viewing the setup from above:

Z: points up, Xs points to the right, and Y. points at us (Figure 9-3).

/P
z=d

pr

z
A

- X

Top view
Figure 9-3: Top view of the perspective

projection setup

Using similar triangles again in the same way, we can deduce that

_Px-d
P,

P

We now have all three coordinates of P’.

The Projection Equation
Let’s put all this together. Given a point P in the scene and a standard cam-

era and viewport setup, we can compute the projection of P on the viewport,

which we call P/, as follows:
P -d
P,

Pl =
107

Perspective Projection

108

P’ is on the viewport, but it’s still a point in 3D space. How do we get
the corresponding point in the canvas?

We can immediately drop PZ, because every projected point is on the
viewport plane. Next we need to convert P} and P;, to canvas coordinates
Cy and Cy. P’ isstill a point in the scene, so its coordinates are expressed in
scene units. We can divide them by the width and height of the viewport.
These are also expressed in scene units, so we obtain temporarily unit-less
values. Finally, we multiply them by the width and height of the canvas, ex-
pressed in pixels:

P .C
Cp =22
X Vw
c =Py~Ch
y Vh

This viewport-to-canvas transform is the exact inverse of the canvas-to-
viewport transform we used in the raytracing part of this book. And with
this, we can finally go from a point in the scene to a pixel on the screen!

Properties of the Projection Equation

Chapter 9

Before we move on, there are some interesting properties of the projection
equation that are worth discussing.

The equations above should be compatible with our day-to-day experi-
ence of looking at things in the real world. For example, the farther away an
object is, the smaller it looks; and indeed, if we increase P, we get smaller
values of P} and Pj.

However, things stop being so intuitive when we decrease the value of
P, too much; for negative values of P,, that is, when an object is behind the
camera, the object is still projected, but upside down! And, of course, when
P, = 0 we’d divide by zero and the universe would implode. We’ll need to
find a way to avoid these unpleasant situations; for now, we’ll assume that
every point is in front of the camera and deal with this in a later chapter.

Another fundamental property of the perspective projection is that it
preserves point alignment: if three points are aligned in space, their pro-
jections will be aligned on the viewport. In other words, a straight line is al-
ways projected as a straight line. This might sound too obvious to be worth
mentioning, but note, for example, that the angle between two lines isn’t pre-

served: in real life, we see parallel lines “converge” at the horizon, such as
when driving on a highway.

The fact that a straight line is always projected as a straight line is ex-
tremely convenient for us: so far we have talked about projecting a point,
but how about projecting a line segment, or even a triangle? Because of this
property, the projection of a line segment between two points is the line seg-
ment between the projection of two points; and the projection of a triangle
is the triangle formed by the projections of its vertices.

Projecting Our First 3D Object

This means we can go ahead and draw our first 3D object: a cube. We define
the coordinates of its 8 vertices, and we draw line segments between the pro-
jections of the 12 pairs of vertices that make the edges of the cube, as seen in
Listing 9-1.

ViewportToCanvas(x, y) {
return (x * Cw/Vw, y * Ch/Vh);

}

ProjectVertex(v) {
return ViewportToCanvas(v.x * d / v.z, v.y * d / v.z)

}

// The four "front" vertices
VvAf = [-1, 1, 1]

vBf = [1, 1, 1]

vCf = [1, -1, 1]

vDf = [-1, -1, 1]

// The four "back" vertices

vAb = [-1, 1, 2]
vBb = [1, 1, 2]
vCb = [1, -1, 2]
vbb = [-1, -1, 2]

// The front face

DrawLine(ProjectVertex(vAf), ProjectVertex(vBf), BLUE);
DrawLine(ProjectVertex(vBf), ProjectVertex(vCf), BLUE);
DrawLine(ProjectVertex(vCf), ProjectVertex(vDf), BLUE);
DrawLine(ProjectVertex(vDf), ProjectVertex(vAf), BLUE);

// The back face
DrawLine(ProjectVertex(vAb), ProjectVertex(vBb), RED);

Perspective Projection 109

110

Chapter 9

DrawLine(ProjectVertex(vBb), ProjectVertex(vCb), RED);
DrawLine(ProjectVertex(vCb), ProjectVertex(vDb), RED);
DrawLine(ProjectVertex(vDb), ProjectVertex(vAb), RED);

// The front-to-back edges

DrawLine(ProjectVertex(vAf), ProjectVertex(vAb), GREEN);
DrawLine(ProjectVertex(vBf), ProjectVertex(vBb), GREEN);
DrawLine(ProjectVertex(vCf), ProjectVertex(vCb), GREEN);
DrawLine(ProjectVertex(vDf), ProjectVertex(vDb), GREEN);

Listing 9-1: Drawing a cube

We get something like Figure 9-4.

Figure 9-4: Our first 3D object projected on a 2D canvas: a cube

You can find a live implementation of this algorithm at https://
gabrielgambetta.com/cgfs/perspective-demo.

Success! We’ve managed to go from the geometrical 3D representation
of an object to its 2D representation as seen from our synthetic camera!

Our approach is very artisanal, though. It has many limitations. What if
we want to render two cubes? Would we have to duplicate most of the code?
What if we want to render something other than a cube? What if we want to
let the user load a 3D model from a file? We clearly need a more data-driven
approach to representing 3D geometry.

https://gabrielgambetta.com/cgfs/perspective-demo
https://gabrielgambetta.com/cgfs/perspective-demo

Summary

In this chapter, we’ve developed the math to go from a 3D point in the scene
to a 2D point on the canvas. Because of the properties of the perspective
projection, we can immediately extend this to projecting line segments and
then to 3D objects.

But we have left two important issues unresolved. First, Listing 9-1 mixes
the perspective projection logic with the geometry of the cube; this ap-
proach clearly won’t scale. Second, because of the limitations of the perspec-
tive projection equation, it can’t handle objects that are behind the camera.
We will address these issues in the next two chapters.

Perspective Projection 111

DESCRIBING AND RENDERING A
SCENE

In the last few chapters, we’ve developed
algorithms to draw 2D triangles on the can-
vas given their 2D coordinates, and we’ve
explored the math required to transform the
3D coordinates of points in the scene to the 2D coor-

dinates of points on the canvas.

At the end of the previous chapter, we cobbled together a program that
used both to render a 3D cube on the 2D canvas. In this chapter, we’ll for-
malize and extend that work with the goal of rendering a whole scene con-

taining an arbitrary number of objects.

Representing a Cube

Let’s think again about how to represent and manipulate a cube, this time
with the goal of finding a more general approach. The edges of our cube are
2 units long and are parallel to the coordinate axes, and it’s centered on the
origin, as shown in Figure 10-1.

114

Chapter 10

Figure 10-1: Our standard cube

These are the coordinates of its vertices:

A=(1,1,1)
B=(-1,1,1)
C=(-1,-1,1)
D=(1,-1,1)
E=(1,1,-1)
F=(-1,1,-1)
G=(-1,-1,-1)
H=(1,-1,-1)

The sides of the cube are square, but the algorithms we have developed
work with triangles. One of the reasons we chose triangles in the first place
is that any other polygon, including squares, can be decomposed into trian-
gles. So we’ll represent each square side of the cube using two triangles.

However, we can’t take any three vertices of the cube and expect them
to describe a triangle on its surface (for example, ADG is inside the cube).
This means that the vertex coordinates, by themselves, don’t fully describe
the cube: we also need to know which sets of three vertices describe the tri-
angles that make up its sides.

Here’s a possible list of triangles for our cube:

<
-

- - - - - -
- - - > -

-
-

m M W O T T m m > >
-

o M O M I m 9O >» N @
-

-

-
> W N OO T T O ON

-

)

)

This suggests a generic structure we can use to represent any object

made of triangles: a Vertices list, holding the coordinates of each vertex; and
a Triangles list, specifying which sets of three vertices describe triangles on

the surface of the object.

represented like this:

Each entry in the Triangles list may include additional information be-
sides the vertices that make it up; for example, this would be the perfect
place to specify the color of each triangle.

Since the most natural way to store this information is in two lists, we’ll
use list indices to refer to the vertices in the vertex list. So our cube would be

Vertices

0=(1, 1,
1=(-1, 1,
2 = (-1, -1,
3=1(1, -1,
4=1(1, 1,
5=(-1, 1,
6 = (-1, -1,
7=1(1, -1,
Triangles

0=0,1, 2,
1=0, 2,3,
2 =4, 0, 3,
3=4,3,1,
4=5,4,1,
5=5,7,6,
6=1,5,6,
7=1,6, 2,
8 =14,5,1,
9 =4,1,0,
10 =2, 6, 7,
1 =2, 7, 3,

1)
1)
1)
1)
_1)
_1)
_1)
_1)

red
red
green
green
blue
blue
yellow
yellow
purple
purple
cyan
cyan

Rendering an object with this representation is quite simple: we first
project every vertex, storing them in a temporary projected vertices list

(since each vertex is used an average of four times, this avoids a lot of

Describing and Rendering a Scene

115

116

Chapter 10

repeated work); then we go through the triangle list, rendering each individ-
ual triangle. A first approximation would look like Listing 10-1.

RenderObject(vertices, triangles) {
projected = []
for V in vertices {
projected.append(ProjectVertex(V))
}
for T in triangles {
RenderTriangle(T, projected)

RenderTriangle(triangle, projected) {
DrawWireframeTriangle(projected[triangle.v[0]],
projected[triangle.v[1]],
projected[triangle.v[2]],
triangle.color)

}

Listing 10-1: An algorithm to render any object made of triangles

We can go ahead and apply this directly to the cube as defined above,
but the results won’t look good. This is because some of its vertices are be-
hind the camera, which, as we discussed in the previous chapter, is a recipe
for weird things. And if you look at the vertex coordinates and Figure 10-1,
you’ll notice the coordinate origin, the position of our camera, is inside the
cube.

To work around this problem, we’ll just move the cube. To do this, we
need to move each vertex of the cube in the same direction. Let’s call this di-
rection T, for “translation.” We’ll translate the cube 7 units forward to make
sure it’s completely in front of the camera. We’ll also translate it 1.5 units to
the left to make it look more interesting. Since “forward” is the direction of
Z+ and “left” is X, the translation vector is simply

-1.5
=1 o
7

To compute the translated version V' of each vertex Vin the cube, we
just need to add the translation vector to it:

V'=V+T

At this point, we can take the cube, translate each vertex, and then apply
the algorithm in Listing 10-1 to get our first 3D cube (Figure 10-2).

Figure 10-2: Our cube, translated in front of the camera, rendered
with wireframe triangles

You can find a live implementation of this algorithm at https:;//
gabrielgambetia.com/cgfs/scene-demo.

Models and Instances

What if we want to render two cubes? A naive approach would be to create a
new set of vertices and triangles describing a second cube. This would work,
but it would waste a lot of memory. What if we wanted to render one million
cubes?

A better approach is to think in terms of models and instances. A model
is a set of vertices and triangles that describes a certain object in a generic
way (think “a cube has eight vertices and six sides”). An instance of a model,
on the other hand, describes a concrete occurrence of that model within the
scene (think “there’s a cube at (0, 0, 5)”).

How do we apply this idea in practice? We can have a single description
of each unique object in the scene and then place multiple copies of it by
specifying their coordinates. Informally, it would be like saying, “This is what
a cube looks like, and there’s cubes here, here and there.”

This is a rough approximation of how we’d describe a scene using this
approach:

model {
name = cube

Describing and Rendering a Scene 117

https://gabrielgambetta.com/cgfs/scene-demo
https://gabrielgambetta.com/cgfs/scene-demo

vertices {

}
triangles {
}
}
instance {
model = cube
position = (0, 0, 5)
}
instance {
model = cube
position = (1, 2, 3)
}

In order to render this, we just go through the list of instances; for each
instance, we make a copy of the model’s vertices, translate them according
to the position of the instance, and then render them as before (Listing
10-2).

RenderScene() {
for I in scene.instances {
RenderInstance(I);

RenderInstance(instance) {

projected = []

model = instance.model

for V in model.vertices {
V' =V + instance.position
projected.append(ProjectVertex(V'))

}

for T in model.triangles {
RenderTriangle(T, projected)

}

Listing 10-2: An algorithm to render a scene that can contain multiple instances of several
objects, each in a different position

118 Chapter 10

If we want this to work as expected, the coordinates of the vertices on
the model should be defined in a coordinate system that “makes sense” for
the object; we’ll call this coordinate system model space. For example, we de-
fined our cube such that its center was (0, 0, 0); this means that when we say
“a cube located at (1, 2, 3),” we mean “a cube centered around (1, 2, 3).”

After applying the instance translation to the vertices defined in model
space, the transformed vertices are now expressed in the coordinate system
of the scene; we’ll call this coordinate system world space.

There are no hard and fast rules to define a model space; it depends
on the needs of your application. For example, if you have the model of a
person, it might be sensible to place the origin of the coordinate system at

their feet.
Figure 10-3 shows a simple scene with two instances of our cube.

Figure 10-3: A scene with two instances of the same cube model,
placed in different positions

You can find a live implementation of this algorithm at https:;//

gabrielgambetia.com/cgfs/instances-demo.

Model Transform

The scene definition we described above doesn’t give us a lot of flexibility.
Since we can only specify the position of a cube, we could instantiate as many
cubes as we wanted, but they would all be facing the same direction. In gen-

Describing and Rendering a Scene 119

https://gabrielgambetta.com/cgfs/instances-demo
https://gabrielgambetta.com/cgfs/instances-demo

eral, we want to have more control over the instances: we also want to spec-
ify their orientation and possibly their scale.

Conceptually, we can define a model transform with these three elements:
a scaling factor, a rotation around the origin in model space, and a transla-
tion to a specific point in the scene:

instance {
model = cube
transform {
scale = 1.5
rotation = <45 degrees around the Y axis>
translation = (1, 2, 3)

We can extend the algorithm in Listing 10-2 to accommodate the new
transforms. However, the order in which we apply the transforms is impor-
tant; in particular, the translation must be done last. This is because most
of the time we want to rotate and scale the instances around their origin in
model space, so we need to do that before they’re transformed into world
space.

To understand the difference in the results, take a look at Figure 104,
which shows a 45° rotation around the origin followed by a translation along
the Z axis.

= R

Y
>
Y

\
>

Original

N

Rotation Translation

Figure 10-4: Applying rotation and then translation

120

Chapter 10

Figure 10-5 shows the translation applied before the rotation.

A A A

R(45)

Original Translation Rotation

Figure 10-5: Applying translation and then rotation

Strictly speaking, given a rotation followed by a translation, we can find
a translation followed by a rotation (perhaps not around the origin) that
achieves the same result. However, it’s far more natural to express this kind
of transform using the first form.

We can write a new version of RenderInstance that supports scale, rota-
tion, and position (see Listing 10-3).

RenderInstance(instance) {

projected = []

model = instance.model

for V in model.vertices {
V' = ApplyTransform(V, instance.transform)
projected.append(ProjectVertex(V'))

}

for T in model.triangles {
RenderTriangle(T, projected)

}

Listing 10-3: An algorithm to render a scene that can contain multiple instances of several
objects, each with a different transform

Describing and Rendering a Scene 121

The ApplyTransform method looks like Listing 10-4.

ApplyTransform(vertex, transform) {
scaled = Scale(vertex, transform.scale)
rotated = Rotate(scaled, transform.rotation)
translated = Translate(rotated, transform.translation)
return translated

}

Listing 10-4: A function that applies transforms to a vertex in the correct order

Camera Transform

The previous sections explored how we can position instances of models at
different points in the scene. In this section, we’ll explore how to move and
rotate the camera within the scene.

Imagine you’re a camera floating in the middle of a completely empty
coordinate system. Suddenly, a red cube appears exactly in front of you (Fig-
ure 10-6).

Figure 10-6: A red cube appears in front of the camera.

A second later, the cube moves 1 unit toward you (Figure 10-7).

122 Chapter 10

Figure 10-7: The red cube moves toward the camera . . . or does it2

But did the cube really move 1 unit toward you? Or did you move 1 unit
toward the cube? Since there are no points of reference at all, and the coor-
dinate system isn’t visible, there’s no way to tell just by looking at what you

see, because the relative position of the cube and the camera are identical in
both cases (Figure 10-8).

- - - - -

———
A
~

Figure 10-8: Without the coordinate system, we can't tell whether it was the object or the camera that moved.

Now the cube rotates around you 45° clockwise. Or does it? Maybe it

was you who rotated 45° counterclockwise? Again, there’s no way to tell (Fig-
ure 10-9).

Describing and Rendering a Scene 123

L e (

‘ > X JL»x J7—>x

Figure 10-9: Without the coordinate system, we can’t tell whether it was the object or the camera that rotated.

What this thought experiment shows is that there’s no difference be-
tween moving the camera around a fixed scene and keeping the camera
fixed while rotating and translating the scene around it!

The advantage of this clearly self-centered vision of the universe is that
by keeping the camera fixed at the origin and pointing at Z+, we can use the
projection equations derived in the previous chapter without any modifica-
tion. The coordinate system of the camera is called the camera space.

Let’s assume the camera also has a transform attached to it, consisting
of translation and rotation. In order to render the scene from the point of
view of the camera, we need to apply the opposite transforms to each vertex
of the scene:

Vivansiated = Vscene — camera.translation
Veam_space = tnverse(camera.rotation) - Vyansiated

Virojected = perspective_projection(Veam_space)

Note that we represent rotations using rotation matrices. Please refer to the
Linear Algebra appendix for more details about this.

The Transform Matrix

Now that we can move both the camera and the instances around the scene,
let’s take a step back and consider everything that happens to a vertex V4,
in model space until it’s projected into the canvas point (cx, ¢y).
We first apply the model transform to go from model space to world
space:
Vinodel_scaled = tnstance.scale - Viyodel

Vmodel_rotated = instance.rotation - Vmodel_scaled

Vaworid = Vinodel_rotated + instance.translation

124 Chapter 10

Then we apply the camera transform to go from world space to camera
space:
Viranstated = Vworld — camera.translation
Vieamera = tnverse(camera.rotation) - Viansiated

Next, we apply the perspective equations to get viewport coordinates:

_ Veamerax - d

Ux
Veameraz
- Vcamemy -d
y = e —
Veameraz

And finally we map the viewport coordinates to canvas coordinates:

_Ux " Cw
Cx
UV
=
¢y = ——
Up,

As you can see, it’s a lot of computation and a lot of intermediate values
for each vertex. Wouldn'’t it be nice if we could reduce all of that to a more
compact and efficient form?

Let’s express the transforms as functions that take a vertex and return a
transformed vertex. Let C7 and Cg be the camera translation and rotation;
IR, Is, and I7 the instance rotation, scale, and translation; P the perspective
projection; and M the viewport-to-canvas mapping. If Vis the original vertex
and V' is the point on the canvas, we can express all the equations above like
this:

V' = M(P(CR\ (€7 (Ir(IrUs(M))))

Ideally, we’d like a single transform F that does whatever the series of
original transforms does, but that has a much simpler expression:

F=M-P-Cgt-C} -Ip-Ip-Ig
V' =FYV)

Finding a simple way to represent F isn’t trivial. Our main obstacle is
that we express each transform in a different way: we express translation as
the sum of a point and a vector, rotation as the multiplication of a matrix
and a point, scaling as the multiplication of a real number and a point, and
perspective projection as real number multiplications and divisions. But if
we could express all the transforms in the same way, and if such a way had a
mechanism to compose transforms, we’d get the simple transform we want.

Describing and Rendering a Scene 125

126

Homogeneous Coordinates

Chapter 10

Consider the expression A = (1,2, 3). Does A represent a 3D point or a 3D
vector? If we don’t know the context in which A is used, there’s no way to
know.

But let’s add a fourth value, called w, to mark A as a point or a vector. If
w = 0,it’savector; if w = 1, it’s a point. So the point A is unambiguously
represented as A = (1,2, 3, 1) and the vector Ais represented as (1,2, 3, 0).

Since points and vectors share the same representation, these four-
component coordinates are called homogeneous coordinates. Homogeneous
coordinates have a far deeper and far more involved geometric interpreta-
tion, but that’s outside the scope of this book; here, we’ll just use them as a
convenient tool.

Manipulating points and vectors expressed in homogeneous coordinates
is compatible with their geometric interpretation. For example, subtracting
two points produces a vector:

(8’ 4’ 2’ 1) - (3’ 2’ 1’ 1) = (5’ 2’]" 0)

Adding two vectors produces another vector:

(O’ 09]" 0) + (1707 O’ O) = (1’0’ 190)

In the same way, it’s easy to see that adding a point and a vector pro-
duces a point, multiplying a vector by a scalar produces a vector, and so on,
just as we expect.

So what do coordinates with a w value other than 0 or 1 represent? They
also represent points. In fact, any point in 3D has an infinite number of rep-
resentations in homogeneous coordinates. What matters is the ratio between
the coordinates and the w value. For example, (1,2, 3, 1) and (2, 4, 6, 2) rep-
resent the same point, as does (-3,-6,-9, -3).

Of all of these representations, we call the one with w = 1 the canoni-
cal representation of the point in homogeneous coordinates; converting any
other representation to its canonical representation or to its Cartesian coor-
dinates is trivial:

x
w
X
X ¥ w
=12
z z w
w
w z
w
1

So we can convert Cartesian coordinates to homogeneous coordinates,
and back to Cartesian coordinates. But how does this help us find a single
representation for all the transforms?

Homogeneous Rotation Matrix

Let’s begin with a rotation matrix. Converting a 3 x 3 rotation matrix in
Cartesian coordinates to a 4 X 4 rotation matrix in homogeneous coordi-
nates is trivial; since the w coordinate of the point shouldn’t change, we add
a column to the right, a row to the bottom, fill them with zeros, and place a
1 in the lowerright element to keep the value of w:

/

A B C N v A B C 0 x x/
|, D E F 0 vyl |y

D E Fl-|y|=1|y]|— =17
G H I . 9 G HIT1 0 z z
0 0 0 1 1 1

Homogeneous Scale Matrix

A scaling matrix is also trivial in homogeneous coordinates, and it’s con-
structed in the same way as the rotation matrix:

S, 0 0 . x-Sy S 0 0 0 x x-Sy
0 Sy 0 0 Y -Sy
0 S O0)-{y]={yS|— =
0 0 S . .S 0o 0 § O Z z-S,
z * 0 0 0 1 1 1

Homogeneous Translation Matrix

The rotation and scale matrices were easy; they were already expressed as
matrix multiplications in Cartesian coordinates, we just had to add a 1 to
preserve the w coordinate. But what can we do with a translation, which we
had expressed as an addition in Cartesian coordinates?

We’re looking for a 4 x 4 matrix such that

Ty X A B C D X x+ Ty
Ty A E F G H y y+ Ty
T, Z I J K L z 2+ T,
0 1 M N O P 1 1

Describing and Rendering a Scene 127

128

Chapter 10

Let’s focus on getting x + T first. This value is the result of multiplying
the first row of the matrix and the point—that is,

X
(4 B € D)-|)|=x+Ty
1

If we expand the vector multiplication, we get

Ax+By+Cz+D=x+Ty

From here we can deduce that A=1,B=C=0,and D = T,.
Following a similar reasoning for the rest of the coordinates, we arrive at
the following matrix expression for the translation:

Ty X 1 0 0 T, X x+ Ty
Ty o - 01 0 T, y y+ T
T, b4 0 0 1 T, z 2+ T,
0 1 0 0 0 1 1 1

Homogeneous Projection Matrix

Sums and multiplications are easy to express as multiplications of matrices
and vectors because they involve, after all, sums and multiplications. But the
perspective projection equations have a division by z. How can we express
that?

You may be tempted to think that dividing by z is the same as multiply-
ing by 1/z, and you may want to solve this problem by putting 1/z in the ma-
trix. However, which z coordinate would we put there? We want this projec-
tion matrix to work for every input point, so hardcoding the z coordinate of
any point would not give us what we want.

Fortunately, homogeneous coordinates do have one instance of a divi-
sion: the division by the w coordinate when converting back to Cartesian
coordinates. If we can manage to make the z coordinate of the original point
appear as the w coordinate of the “projected” point, we’ll get the projected x
and y once we convert the point back to Cartesian coordinates:

2
U

; x-d
. =ly-d| —
1

~ T
2 o2

A B C
E F G
I J K z

|3

Note that this matrix is 3 X 4; it can be multiplied by a four-element
vector (the transformed 3D point in homogeneous coordinates) and it will
yield a three-element vector (the projected 2D point in homogeneous coor-

dinates), which is then converted to 2D Cartesian coordinates by dividing
by w. This gives us exactly the values of x’ and y’ we were looking for. The
missing element here is 2/, which we know is equal to d by definition.

Applying the same reasoning we used to deduce the translation matrix,
we can express the perspective projection as follows:

®
U

x-d
=ly-d| —
z

S O X
S /U o
— 02 R

N‘ke- N‘~
S

Homogeneous Viewport-to-Canvas Matrix

The last step is mapping the projected point on the viewport to the canvas.
This is just a 2D scaling transform with Sy = 1% and Sy = 1‘}—}; This matrix is

thus
X-Cw
w Vw
e 000 x v
Cy — “Ch
0 0 1 z
Z

In fact, it’s easy to combine this with the projection matrix to get a sim-
ple 3D-to-canvas matrix:

x-d-cw

. X vw
dv% 0O 0 0 (m)(@)
0 b g o). |V = |uda | (020
V) h dy,
0 0 1 0 i b (X5)(<hy

Z

The Transform Matrix Revisited

After all this work, we can express every transform we need to convert a
model vertex V into a canvas pixel V/ as a matrix. Moreover, we can com-
pose these transforms by multiplying their corresponding matrices. So we
can express the whole sequence of transforms as a single matrix:

F=M-P-Cg -C# -Ip-Ig-Ig

Now transforming a vertex is just a matter of computing the following
matrix-by-point multiplication:

Vi=F.V

Describing and Rendering a Scene 129

Furthermore, we can decompose the transform into three parts:

Mpyojection =M - P
M =Ci -
Camera R T
Mmtoder = I - IR - Is
M = Mpyojection - Mcamera - MModel

These matrices don’t need to be computed from scratch for every vertex
(that’s the point of using a matrix after all). Because matrix multiplication is
associative, we can reuse the parts of the expression that don’t change.

Mpyojection should rarely change; it only depends on the size of the view-
port and the size of the canvas. The size of the canvas changes when, for
example, the application goes from windowed to fullscreen. The size of the
viewport would only change if the field of view of the camera changes; this
doesn’t happen very often

Mcamera may change every frame; it depends on the camera position
and orientation, so if the camera is moving or turning, it needs to be recom-
puted. Once computed, though, it remains constant for every object drawn
in the frame, so it would be computed at most once per frame.

Mppoa01 Will be different for each instance in the scene; however, it will
remain constant over time for instances that don’t move (for example, trees
and buildings), so it can be computed once and stored in the scene itself.
For objects that do move (for example, cars in a racing game) it needs to be
computed every time they move (which is likely to be every frame).

A very high level of the scene rendering pseudocode would look like
Listing 10-5.

RenderModel (model, transform) {
projected = []
for V in model.vertices {
projected.append(ProjectVertex(transform * V))
}
for T in model.triangles {
RenderTriangle(T, projected)

RenderScene() {
M_camera = MakeCameraMatrix(camera.position, camera.orientation)

for I in scene.instances {
M = M_camera * I.transform

130 Chapter 10

RenderModel(I.model, M)

}

Listing 10-5: An algorithm to render a scene using transform matrices

We can now draw a scene containing several instances of different mod-
els, possibly moving around and rotating, and we can move the camera
throughout the scene. Figure 10-10 shows two instances of our cube model,
each with a different transform (including translation and rotation), ren-
dered from a translated and rotated camera.

<

Figure 10-10: A scene with two instances of the same cube model,
having different instance transforms, and a transformed camera

You can find a live implementation of this algorithm at https:;//
gabrielgambetta.com/cgfs/transforms-demo.

Summary

We covered a lot of ground in this chapter. We first explored how to repre-
sent models made out of triangles. Then we figured out how to apply the
perspective projection equation we derived in the previous chapter to entire
models, so we can go from an abstract 3D model to its representation on the
screen.

Next we developed a way to have multiple instances of the same model
in the scene without having multiple copies of the model itself. Then we

Describing and Rendering a Scene 131

https://gabrielgambetta.com/cgfs/transforms-demo
https://gabrielgambetta.com/cgfs/transforms-demo

132

Chapter 10

found out how to lift one of the limitations we had been working with so
far: our camera no longer needs to be fixed at the origin of the coordinate
system or pointing toward 7+,

Finally, we explored how to represent all the transforms we need to ap-
ply to a vertex as matrix multiplications in homogeneous coordinates, and
this allowed us to reduce the computations required to render a scene by
condensing many of the consecutive transforms into just three matrices: one
for the perspective projection and viewport-to-canvas mapping, one for the
instance transform, and one for the camera transform.

This has given us a lot of flexibility in terms of what we can represent in
a scene, and it also allows us to move the camera around the scene. But we
still have two important limitations. First, moving the camera means we can
end up with objects behind it, which causes all sorts of problems. Second,
the rendering doesn’t look so great: it’s still a wireframe image.

Note that for practical reasons we won’t be using the full projection ma-
trix in the rest of this book. Instead, we’ll use the model and camera trans-
forms separately and then convert their results back to Cartesian coordi-
nates as follows:

, x-d-cw

o ="
Z - vw

,zy-d~ch
) z-vh

This lets us do some more operations in 3D that can’t be expressed as
matrix transforms before we project the points.

In the next chapter, we’ll deal with objects that shouldn’t be visible,
and then we’ll spend the rest of this book making the rendered objects look
better.

CLIPPING

In the last few chapters, we developed
equations and algorithms to transform a

3D definition of a scene into 2D shapes we

can draw on the canvas; we developed a scene
structure that lets us define 3D models and place in-
stances of those models in the scene; and we devel-
oped an algorithm that lets us render the scene from
any point of view.

However, doing this exposes one of the limitations we’ve been working
with: the perspective projection equations only work as expected for points
that are in front of the camera. Since we can now move and rotate the cam-
era around the scene, this poses a problem.

In this chapter, we’ll develop the techniques necessary to lift this limita-
tion: we’ll explore how to identify points, triangles, and entire objects that
are behind the camera and develop techniques to deal with them.

An Overview of the Clipping Process

Back in Chapter 9, we arrived at the following equations:

pr_Ped
X Pz
P/=Py'd
y P,

The division by P, is problematic; it can cause a division by zero. Moreover,
points behind the camera have negative Z values, which we currently can’t
handle properly. Even points in front of the camera but very close to it will
cause trouble in the form of severely distorted objects.

To avoid these problematic cases, we’ll choose not to render anything
behind the projection plane Z = d. This clipping plane lets us classify any
point as being inside or outside of the clipping volume—that is, the subset of
space that is actually visible from the camera. In this case, the clipping vol-
ume is “whatever is in front of Z = d.” We’ll only render the parts of the
scene that are inside the clipping volume.

The Clipping Volume

Using a single clipping plane to make sure no objects behind the camera are
rendered will produce correct results, but it’s not entirely efficient. Some
objects may be in front of the camera but still not visible; for example, the
projection of an object near the projection plane but far, far to the right will
be projected outside of the viewport and therefore won’t be visible, as shown
in Figure 11-1.

Top view

Figure 11-1: An object that is in front of the projection plane,
but will be projected outside of the viewport

Any computational resources we use to project such an object, plus all
the per-triangle and per-vertex computations done to render it, would be
wasted. It would be more efficient to ignore these objects altogether.

134 Chapter 11

To do this, we can define additional planes to clip the scene to exactly
what should be visible on the viewport; these planes are defined by the cam-
era and each of the four sides of the viewport (Figure 11-2).

z Y Top
A A

Near

Left Right

Near

P X Bottom

Figure 11-2: The five planes that define our clipping volume

Each of the clipping planes splits space in two parts we call half-spaces.
The “inside” half-space is everything that’s in front of the plane; the “out-
side” half-space is everything that’s behind it. The “inside” of the clipping
volume we’re defining is the intersection of the “inside” half-spaces defined
by each clipping plane. In this case, the clipping volume looks like an in-
finitely tall pyramid with the top chopped off.

This means that to clip the scene against a clipping volume, we just need
to clip it in succession against each of the planes that define the clipping vol-
ume. Whatever geometry remains inside after clipping against one plane is
then clipped against the remaining planes. After the scene has been clipped
against all the planes, the geometry that remains is the result of clipping the
scene against the clipping volume.

Next we’ll take a look at how to clip the scene against each clipping
plane.

Clipping the Scene Against a Plane

Consider a scene with multiple objects, each made of four triangles (Fig-
ure 11-3).

Clipping 135

136

Chapter 11

Qutside

Figure 11-3: A scene with three objects

The fewer operations we execute, the faster our renderer will be. We will
clip the scene against a clipping plane as a sequence of stages. Each stage
will attempt to classify as much geometry as possible as either accepted or
discarded, depending on whether it’s inside or outside the half-space defined
by the clipping plane (that is, the clipping volume of this plane). Whatever
geometry can’t be classified moves on to the next stage, which will take a
more detailed look at it.

The first stage attempts to classify entire objects at once. If an object is
completely inside the clipping volume, it’s accepted (green in Figure 11-4); if
it’s completely outside, it’s discarded (red in Figure 11-4).

Figure 11-4: Clipping at the object level. Green is accepted, red is
discarded, and gray requires further processing.

If an object can’t be fully accepted or discarded, we move on to the next
stage and classify each of its triangles independently. If a triangle is com-
pletely inside the clipping volume, it’s accepted; if it’s completely outside, it’s
discarded (see Figure 11-5).

QOutside

Figure 11-5: Clipping at the triangle level. Each triangle of the rightmost
object is either accepted, discarded, or requires further processing.

Finally, for each triangle that isn’t either accepted or discarded, we need
to clip the triangle itself. The original triangle is removed, and either one
or two new triangles are added to cover the part of the triangle that is inside
the clipping volume (see Figure 11-6).

Inside

Figure 11-6: Clipping at the vertex level. Each triangle that is partially
inside the clipping volume is split into one or two triangles that are
fully inside the clipping volume.

Now that we have a clear conceptual understanding of how clipping
works, we’ll develop the math and algorithms to create a working implemen-
tation.

Clipping 137

138

Defining the Clipping Planes

Chapter 11

Let’s start with the equation of the projection plane Z = d, which we’ll use as
a clipping plane. This equation is simple to visualize, but it’s not in the most
convenient or general form for our purposes.

The general equation for a 3D plane is Ax + By + Cz + D = 0, meaning a
point P = (x, y, z) will satisfy that equation if and only if P is on the plane. If
we group the coefficients (A, B, C) in a vector N, we can rewrite the equation
as (N,P)+D=0.

Note that if (N, P) + D = 0, then k(N, P) + kD = 0 for any value of k. In
particular, we can choose k = 1/ IN|, multiply the original equation, and get
anew equation (N’, P) + D’ = 0 where N' is a unit vector. So any given plane
can be represented by an equation (Nf, P)+D =0, where Nis a unit vector and
D is a real number.

This is a very convenient formulation: N happens to be the normal
of the plane and —-D is the signed distance from the origin to the plane. In
fact, for any point P, (Z_\7, P) + Dis the signed distance from the plane to P;
distance = 0 is just the special case where P is contained in the plane.

If N is the normal of a plane, so is -N, so we choose N such that it points
to “inside” the clipping volume. For the plane Z = d, we choose the normal
(0,0, 1), which points “forward” with respect to the camera. Since the point
(0,0, d) is contained in the plane, it must satisfy the plane equation, and we
can solve for D:

(N,P)+D=((0,0,1),(0,0,d)) +D=d+D =0

and from this we immediately get D = —d.

We could have gotten D = —d directly from the original plane equation
Z = d by rewriting it as Z — d = 0. However, we can apply this general method
to derive the equations of the rest of the clipping planes.

We know all these additional planes have D = 0 (because they all go
through the origin), so all we need to do is determine their normals. To
make the math simple, we’ll choose a 90° field of view (FOV), meaning the
planes are at 45°.

Consider the left clipping plane. The direction of its normal is (1,0, 1)
(that is, 45° right and forward). The length of that vector is V2, so if we
normalize it we get (%, 0, %). Therefore the equation of the left clipping

plane is

1 1
T O} =)
(\@ V2)
Similarly, the normals for the right, bottom, and top clipping planes are

(\/5’ 0, \/5)’ (0, 73 \/5)’ and (0, 75 \/5) respectively. Computing the clip
ping planes for any arbitrary FOV would involve a little bit of trigonometry.

(N,P)+D={(P)=0

In summary, our clipping volume is defined by the following five planes:

(near) {(0,0,1),P)-d=0

) (5.0, 5).7) =0
(igh) ((—5.0.75).) =0
(bottom) ,%,%mw
(top) <<o,\'/—1§,%>,P>=0

Let’s now take a detailed look at how to clip geometry against a plane.

Clipping Whole Objects

Suppose we put each model inside the smallest sphere that can contain it;
we call that sphere the bounding sphere of the object. Computing this sphere
is surprisingly more difficult than it seems, and it falls outside the scope of
this book. But a rough approximation can be obtained by first computing
the center of the sphere by averaging the coordinates of all the vertices in
the model, and then defining the radius to be the distance from the center
to the vertex that it’s farthest away from.

In any case, let’s assume we know the center C and the radius r of a
sphere that completely contains each model. Figure 11-7 shows a scene with
a few objects and their bounding spheres.

-

Figure 11-7: A scene with a few objects and their bounding spheres

Clipping 139

We can categorize the spatial relationship between this sphere and a
plane as follows:

The sphere is completely in front of the plane. In this case, the entire
object is accepted; no further clipping is necessary against this plane

(but it may still be clipped by a different plane). See Figure 11-8 for an
example.

-

Figure 11-8: The green object is accepted.

The sphere is completely behind the plane. In this case, the entire
object is discarded; no further clipping is necessary (no matter what the
other planes are, no part of the object will ever be inside the clipping
volume). See Figure 11-9 for an example.

-

Figure 11-9: The red object is discarded.

The plane intersects the sphere. This doesn’t give us enough infor-
mation to know whether any part of the object is inside the clipping vol-

140 Chapter 11

ume; it may be completely inside, completely outside, or partially inside.
It is necessary to proceed to the next step and clip the model triangle by
triangle. See Figure 11-10 for an example.

-

Figure 11-10: The gray objects can’t be fully accepted or discarded.

How does this categorization actually work? The way we’ve chosen to
express the clipping planes is such that plugging any point into the plane
equation gives us the signed distance from the point to the plane; in partic-
ular, we can compute the signed distance d from the center of the bounding
sphere to the plane. So if d > r, the sphere is in front of the plane; if d < -,
the sphere is behind the plane; otherwise |d| < r, which means the plane
intersects the sphere. Figure 11-11 illustrates all three cases.

Figure 11-11: The signed distance from the center of a sphere
to a clipping plane tells us whether the sphere is in front of the
plane, behind the plane, or intersects the plane.

Clipping 141

142

Clipping Triangles

Chapter 11

If the sphere—plane test isn’t enough to determine whether an object is fully
in front or fully behind the clipping plane, we have to clip each triangle
against it.

We can classify each vertex of the triangle against the clipping plane by
looking at its signed distance to the plane. If the distance is zero or positive,
the vertex is in front of the clipping plane; otherwise, it’s behind. Figure 11-
12 illustrates this idea.

Inside

Outside
d<0

Figure 11-12: The signed distance from a vertex fo a
clipping plane tells us whether the vertex is in front of
or behind the plane.

For each triangle, there are four possible classifications:

Three vertices in front. In this case, the whole triangle is in front of
the clipping plane, so we accept it and no further clipping against this
plane is needed.

Three vertices behind. In this case, the whole triangle is behind the
clipping plane, so we discard it and no further clipping is necessary at
all.

One vertex in front. Let A be the vertex of the triangle ABC that is in
front of the plane. In this case, we discard ABC, and add a new triangle
AB'C’, where B’ and C’ are the intersections of AB and AC with the
clipping plane (Figure 11-13).

Two vertices in front. Let A and B be the vertices of the triangle ABC
that are in front of the plane. In this case, we discard ABC and add two
new triangles: ABA’ and A’BB’, where A’ and B are the intersections
of AC and BC with the clipping plane (Figure 11-14).

Inside

Figure 11-13: A triangle ABC with one vertex inside and two vertices outside the clipping
volume is replaced by a single triangle AB'C'.

Inside

Figure 11-14: A triangle ABC with one vertex outside and two vertices inside the clipping
volume is replaced by two triangles ABA’ and A’BB’.

Clipping 143

144

Chapter 11

Segment-Plane Intersection

To clip triangles as discussed above, we need to compute the intersection of
the sides of the triangle with the clipping plane.

We have a clipping plane given by the equation (N, P) + D = 0. The trian-
gle side AB can be expressed with a parametric equation as P = A+#B-A) for
0 <t < 1. To compute the value of the parameter ¢ where the intersection
occurs, we replace P in the plane equation with the parametric equation of
the segment:

(N,P)+D=0
P=A+(B-A)
= (N,A+{B-A)+D=0

Using the linear properties of the dot product:

(N,AY+t(N,B-A)y+D=0
Solving for t:

_~D-(N,4)
- (N,B-A)

We know a solution always exists because we know AB intersects the
plane; mathematically, (N, B - A) can’t be zero because that would imply that
the segment and the normal are perpendicular, which in turn would imply
that the segment and the plane don’t intersect.

Having computed ¢, the intersection Q is simply

Q=A+(B-A)

Note that if the original vertices carry additional attributes (for example,
the % intensity value we were using in Chapter 7), we need to compute the
values of these attributes for the new vertices.

In the equation above, ¢ is the fraction of the segment AB where the in-
tersection occurs. Let a4 and apg be the values of some attribute « at the
points A and B; if we assume the attribute varies linearly across AB, then ag
can be computed as

ag = ay *+ilag ~ay)
We now have all the algorithms and equations to implement our clip-
ping pipeline.

Clipping Pseudocode

Let’s write some high-level pseudocode for the clipping pipeline. We'll fol-
low the top-down approach we developed before.
To clip a scene, we clip each of its instances (Listing 11-1).

ClipScene(scene, planes) {
clipped_instances = []
for I in scene.instances {
clipped instance = ClipInstance(I, planes)
if clipped_instance != NULL {
clipped_instances.append(clipped_instance)

}

clipped scene = Copy(scene)
clipped_scene.instances = clipped_instances
return clipped_scene

}

Listing 11-1: An algorithm to clip a scene against a set of clipping planes

To clip an instance, we either accept it, reject it, or clip each of its trian-
gles, depending on its bounding sphere (Listing 11-2).

ClipInstance(instance, planes) {
for P in planes {
instance = ClipInstanceAgainstPlane(instance, plane)
if instance == NULL {
return NULL

}

return instance

ClipInstanceAgainstPlane(instance, plane) {
d = SignedDistance(plane, instance.bounding_sphere.center)
ifdo>r{
return instance
} else if d < -1 {
return NULL
} else {
clipped instance = Copy(instance)
clipped_instance.triangles =
ClipTrianglesAgainstPlane(instance.triangles, plane)

Clipping 145

return clipped_instance

}

Listing 11-2: An algorithm to clip an instance against a set of clipping planes

Finally, to clip a triangle, we either accept it, reject it, or decompose it
into up to two triangles, depending on how many of its vertices are in front
of the clipping plane (Listing 11-3).

ClipTrianglesAgainstPlane(triangles, plane) {
clipped_triangles = []
for T in triangles {
clipped_triangles.append(ClipTriangle(T, plane))
}

return clipped_triangles

ClipTriangle(triangle, plane) {

do = SignedDistance(plane, triangle.v0)
d1 = SignedDistance(plane, triangle.v1)
d2 = SignedDistance(plane, triangle.v2)

if {do, d1, d2} are all positive {
return [triangle]

} else if {do, d1, d2} are all negative {
return []

} else if only one of {do, d1, d2} is positive {
let A be the vertex with a positive distance
compute B' = Intersection(AB, plane)
compute C' = Intersection(AC, plane)
return [Triangle(A, B', C')]

} else /* only one of {do, di, d2} is negative */ {
let C be the vertex with a negative distance
compute A' = Intersection(AC, plane)
compute B' = Intersection(BC, plane)
return [Triangle(A, B, A'), Triangle(A', B, B')]

}

Listing 11-3: An algorithm to clip a set of triangles against a clipping plane

The helper function SignedDistance just plugs the coordinates of a point
into the equation of a plane (Listing 11-4).

SignedDistance(plane, vertex) {
normal = plane.normal
return (vertex.x * normal.x)
+ (vertex.y * normal.y)
+ (vertex.z * normal.z)
+ plane.D
}

Listing 11-4: A function to compute the signed distance from a plane to a point

You can find a live implementation of this algorithm at https://
gabrielgambetta.com/cgfs/clipping-demo.

Clipping in the Rendering Pipeline

The order of the chapters in the book is not the order of operations in the
rendering pipeline; as explained in the introduction, the chapters are or-
dered in such a way that visible progress is reached as quickly as possible.

Clipping is a 3D operation; it takes 3D objects in the scene and gen-
erates a new set of 3D objects in the scene or, more precisely, it computes
the intersection of the scene and the clipping volume. For this reason, clip-
ping must happen after objects have been placed in the scene (that is, using
the vertices after the model and camera transforms) but before perspective
projection.

The techniques presented in this chapter work reliably, but are very
generic. The more prior knowledge you have about your scene, the more
efficient your clipping can be. For example, many games pre-process their
levels by adding visibility information to them; if you can divide a scene into
“rooms,” you can make a table listing what rooms are visible from any given
room. When rendering the scene later, you just need to figure out what
room the camera is in, and you can safely ignore all the rooms marked as
“non-visible” from there, saving considerable resources during rendering.
The trade-off is, of course, more pre-processing time and a more rigid scene.
If you’re interested in this topic, read about BSP partitioning and portal
systems.

Summary

In this chapter, we finally lifted one of the main limitations caused by the
perspective projection equation. We’ve overcome the limitation that only
vertices in front of the camera can be meaningfully projected. In order to do
this, we came up with a precise definition of what “being in front of the cam-
era” means: whatever is inside a clipping volume we define with five planes.

Clipping 147

https://gabrielgambetta.com/cgfs/clipping-demo
https://gabrielgambetta.com/cgfs/clipping-demo

Then we developed the equations and algorithms to compute the ge-
ometrical intersection between the scene and the clipping volume. As a
consequence, we can take an entire scene and remove everything that can’t
possibly be projected onto the viewport. This not only avoids the cases that
can’t be handled by the perspective projection equations, it also saves com-
putation resources by removing geometry that would be projected outside of
the viewport.

However, after clipping a scene, we might still end up with geometry
that could be visible in the final canvas, but which will not, most likely be-
cause there’s something else in front of it! We’ll find ways to deal with this
in the next chapter.

148 Chapter 11

HIDDEN SURFACE REMOVAL

We can now render any scene from any
point of view, but the resulting image is

visually simple: we’re rendering objects in

wireframe, giving the impression that we’re
looking at the blueprint of a set of objects, not at the
objects themselves.

The remaining chapters of this book focus on improving the visual qual-
ity of the rendered scene. By the end of this chapter, we’ll be able to render
objects that look solid (as opposed to wireframe). We already developed an
algorithm to draw filled triangles, but as we will see, using that algorithm
correctly in a 3D scene is not as simple as it might seem!

Rendering Solid Objects

The first idea that comes to mind when we want to make solid objects look
solid is to use the function DrawFilledTriangle that we developed in Chapter 7
to draw each triangle of the objects using a random color (Figure 12-1).

150

Figure 12-1: Using DrawFilledTriangle instead of DrawWireframeTriangle
doesn’t produce the results we expect.

The shapes in Figure 12-1 don’t quite look like cubes, do they? If you
look closely, you’ll see what the problem is: parts of the back faces of the
cube are drawn on top of the front faces! This is because we’re blindly draw-
ing 2D triangles on the canvas in a “random order” or, more precisely, in the
order they happen to be defined in the Triangles list of the model, without
taking into account the spatial relationships between them.

You might be tempted to go back to the model definition and change
the order of the triangles to fix this problem. However, if our scene includes
another instance of the cube that is rotated 180°, we’d go back to the orig-
inal problem. In short, there’s no single “correct” triangle order that will
work for every instance and camera orientation. What should we do?

Painter’s Algorithm

Chapter 12

A first solution to this problem is known as the painter’s algorithm. Real-life
painters draw backgrounds first, and then cover parts of them with fore-
ground objects. We could achieve the same effect by drawing all the trian-
gles in the scene back to front. To do so, we’d apply the model and camera
transforms and sort the triangles according to their distance to the camera.

This works around the “no single correct order” problem explained
above, because now we’re looking for a correct ordering for a specific rela-
tive position of the objects and the camera.

Although this would indeed draw the triangles in the correct order, it
has some drawbacks that make it impractical.

First, it doesn’t scale well. The most efficient sorting algorithm known
to humans is O(n - log(n)), which means the runtime more than doubles if we
double the number of triangles. (To illustrate, sorting 100 triangles would
take approximately 200 operations; sorting 200 triangles would take 460,
not 400; and sorting 800 triangles would take 2,322 operations, not 1,840!)
In other words, this works for small scenes, but it quickly becomes a perfor-
mance bottleneck as the complexity of the scene increases.

Second, it requires us to know the whole list of triangles at once. This
requires a lot of memory and stops us from using a stream-like approach to
rendering. We want our renderer to be like a pipeline, where model trian-
gles enter on one end and pixels come out the other end, but this algorithm
doesn’t start drawing pixels until every triangle has been transformed and
sorted.

Third, even if we’d be willing to live with these limitations, there are
cases where a correct ordering of triangles just doesn’t exist at all. Consider
the case in Figure 12-2. We will never be able to sort these triangles in a way
that produces the correct results.

Figure 12-2: There is no way to sort these triangles “back-to-front.”

Depth Buffering

We can’t solve the ordering problem at the triangle level, so let’s try to solve
it at the pixel level.

Hidden Surface Removal 151

152

Chapter 12

For each pixel on the canvas, we want to paint it with the “correct” color,
where the “correct” color is the color of the object that is closest to the cam-
era. In Figure 12-3, that’s P;.

‘ Side view ‘

Figure 12-3: Both Py and P, project to the same P’
on the canvas. Because Py is closer to the camera
than P,, we want to paint P’ the color of Py.

At any time during rendering, each pixel on the canvas represents one
point in the scene (before we draw anything, it represents a point infinitely
far away). Suppose that for each pixel on the canvas, we kept the Z coordi-
nate of the point it currently represents. When we need to decide whether
to paint a pixel with the color of an object, we will do it only if the Z coor-
dinate of the point we’re about to paint is smaller than the Z coordinate of
the point that is already there. This guarantees that a pixel representing a
point in the scene is never drawn over by a pixel representing a point that is
farther away from the camera.

Let’s go back to Figure 12-3. Suppose that because of the order of the
triangles in a model, we want to paint Ps first and P; second. When we paint
Po, the pixel is painted red, and its associated Z value becomes Zp,. Then we
want to paint P1, and since Zp, > Zp,, we paint the pixel blue and we get the
correct result.

In this particular case, we’d have gotten the correct result regardless of
the values of Z, because the points happened to come in a convenient or-
der. But what if we wanted to paint P; first and Py second? We first paint
the pixel blue and store Zp, ; but when we want to paint Py, we see that
Zp, > Zp,, so we don’t paint it—because if we did, P would be covered by
Po, which is farther away! We get a blue pixel again, which is the correct
result.

In terms of implementation, we need a buffer to store the Z coordinate
of every pixel on the canvas; we call this the depth buffer. It has the same
dimensions as the canvas, but its elements are real numbers representing
depth values, not pixels.

But where do the Z values come from? These should be the Z values
of the points after they’re transformed but before they’re perspective-
projected. However, this only gives us Z values for vertices; we need a Z
value for every pixel of every triangle.

Here is yet another application of the attribute-mapping algorithm we
developed in Chapter 8. Why not use Z as the attribute and interpolate it
across the face of the triangle, just like we did before with color-intensity val-
ues? By now you know how to do it: take the values of z0, z1, and z2; com-
pute z01, z02, and z012; combine them to get z_left and z_right; then, for
each horizontal segment, compute z_segment. Finally, instead of blindly call-
ing PutPixel(x, y, color), we do this:

z = z_segment[x - x1]

if (z < depth_buffer[x][y]) {
canvas.PutPixel(x, y, color)
depth_buffer[x][y] = z

For this to work correctly, every entry in depth_buffer should be initial-
ized to +oo (or just “a very big value”). This guarantees that the first time
we want to draw a pixel, the condition will be true, because any point in the
scene is closer to the camera than a point infinitely far away.

The results we get now are much better—check out Figure 12-4.

Figure 12-4: The cubes now look like cubes, regardless of the ordering
of their triangles.

You can find a live implementation of this algorithm at https:;//
gabrielgambetta.com/cgfs/depth-demo.

Hidden Surface Removal 153

https://gabrielgambetta.com/cgfs/depth-demo
https://gabrielgambetta.com/cgfs/depth-demo

Using 1/1 instead of Z

The results look much better, but what we’re doing is subtly wrong. The val-
ues of Z for the vertices are correct (they come from data, after all), but in
most cases the linearly interpolated values of Z for the rest of the pixels are
incorrect. This might not even result in a visible difference at this point, but
it would become an issue later.

To see how the values are wrong, consider the simple case of a line seg-
ment from A(-1, 0, 2) to B(1, 0, 10), with its midpoint M at (0, 0, 6). Specifi-
cally, because M is the midpoint of AB, we know that M, = (A, + B,)/2 = 6.
Figure 12-5 shows this line segment.

z
A

Top view

Figure 12-5: A line segment AB and its midpoint M

Let’s compute the projection of these points with d = 1. Applying the
perspective projection equations, we get A, = A,/A; = -1/2 = -0.5. Simi-
larly, B}, = 0.1 and M, = 0. Figure 12-6 shows the projected points.

z

Al B'

Top view

Figure 12-6: The points A, B, and M projected
onto the projection plane

154 Chapter 12

A'B’ is a horizontal segment on the viewport. We know the values of A,
and B,. Let’s see what happens if we try to compute the value of M, using
linear interpolation. The implied linear function looks like Figure 12-7.

Figure 12-7: The values of Az and B, for A,; and B, define a linear function z = f{x’).
The slope of the function is constant, so we can write

Mz_Az _ Bz_Az

ML-AL BL-Al

We can manipulate that expression to solve for M,:

B,-A
M, =A,+ (M~ A (o—)
o Y UxRpr-Al

If we plug in the values we know and do some arithmetic, we get

M,=2+(0- (—0.5))(0 10-2) =2+ (0.5)(0%) = 8.666

.1-(-0.5)
This says that the value of M, is 8.666, but we know for a fact it’s actually 6!

Where did we go wrong? We’re using linear interpolation, which we
know works well, and we’re feeding it the correct values, which come from
data, so why is the result wrong?

Our mistake is hidden in the implicit assumption we make when we use
linear interpolation: that the function we are interpolating is linear to begin
with! In this case, it turns out it isn’t.

IfZ = fix',y") was a linear function of ¥’ and y’, we could write itas Z =
Ax' + By’ + C for some values of A, B, and C. This kind of function has the

Hidden Surface Removal 155

156

Chapter 12

property that the difference of its value between two points depends on the
difference between the points but not on the points themselves:

j(x/+Ax,y/+Ay)—f(xl,yl)= [A(x/+Ax)+B(y/+Ay)+C]—[A-x’+B-y/+C]
=AW +Ax-x)+B(y + Ay-y)+C-C
= AAx+ BAy

That is, for a given difference in screen coordinates, the difference in Z
would always be the same.

More formally, the equation of the plane that contains the line segment
we’re studying is

Ax+By+Cz+D=0

On the other hand we have the perspective projection equations:

z-X
x=
d
/
A
7T
If we replace x and y in the plane equation with these expressions, we get
A /o + B /
) 2+ D=0

Multiplying by d and then solving for z,

Ax'z+By'z+dCz+dD =0

(Ax' + By +dC)z+dD = 0
___ b
AV + By +dC

This is clearly not a linear function of ¥’ and y/, and this is why linearly
interpolating values of z gave us an incorrect result.

However, if we compute 1/z instead of z, we get

_AX + By +dC
-
This clearly is a linear function of ¥’ and y’. This means we could linearly
interpolate values of 1/z and get the correct results.

In order to verify that this works, let’s calculate the interpolated value
for M., but this time using the linear interpolation of 1/z:

1/z

B -A,

= z z

1
A, B4

And therefore

This value is correct, in the sense that it matches our original calculation
of M, based on the geometry of the line segment.

All of this means we need to use values of 1/z instead of values of z for
depth buffering. The only practical differences in the pseudocode are that
every entry in the buffer should be initialized to 0 (which is conceptually
1/+00), and that the comparison should be inverted (we keep the bigger
value of 1/z, which corresponds to a smaller value of z).

Back Face Culling

Depth buffering produces the desired results. But can we make things even
faster?

Going back to the cube, even if each pixel ends up having the right
color, many of them are painted over several times. For example, if a back
face of the cube is rendered before a front face, many pixels will be painted
twice. This can be costly. So far we’ve been computing 1/ for every pixel,
but soon we’ll add more attributes, such as illumination. As the number of
per-pixel operations we need to perform increases, computing pixels that
will never be visible becomes more and more wasteful.

Can we discard pixels earlier, before we go into all of this computation?
It turns out we can discard entire triangles before we even start rendering!

Hidden Surface Removal 157

158

Chapter 12

So far we’ve been talking informally about front faces and back faces.
Imagine every triangle has two distinct sides; it’s impossible to see both sides
of a triangle at the same time. In order to distinguish between the two sides,
we’ll stick an imaginary arrow on each triangle, perpendicular to its surface.
Then we’ll take the cube and make sure every arrow is pointing out. Fig-
ure 12-8 shows this idea.

Figure 12-8: A cube viewed from above, with arrows on each
triangle pointing out

These arrows let us classify each triangle as “front” or “back,” depending
on whether they point toward the camera or away from the camera. More
formally, if the view vector and this arrow (which is actually a normal vector
of the triangle) form an angle of less than 90°, the triangle is front-facing;
otherwise, it’s back-facing (Figure 12-9).

>90°

Figure 12-9: The angle between the view vector and
the normal vector of a triangle lets us classify it as front-
facing or back-facing.

At this point, we need to impose a restriction on our 3D models: that
they are closed. The exact definition of closed is pretty involved, but fortu-
nately an intuitive understanding is enough. The cube we’ve been working
with is closed; we can only see its exterior. If we removed one of its faces,
it wouldn’t be closed because we could see inside it. This doesn’t mean we
can’t have objects with holes or concavities; we would just model these with
thin “walls.” See Figure 12-10 for some examples.

A

1

Closed Open Closed

Figure 12-10: Some examples of open and closed objects

Why impose this restriction? Closed objects have the interesting prop-
erty that the set of front faces completely covers the set of back faces, no
matter the orientation of the model or the camera. This means we don’t
need to draw the back faces at all, saving valuable computation time.

Since we can discard (cull) all the back faces, this algorithm is called back
face culling. Its pseudocode is remarkably simple for an algorithm that can
cut our rendering time by half!

CullBackFaces(object, camera) {
for T in object.triangles {
if T is back-facing {
remove T from object.triangles
}
}
}

Listing 12-1: The back face culling algorithm

Let’s take a more detailed look at how to determine whether a triangle is
front-facing or back-facing.

(lassifying Triangles

Suppose we have the normal vector Nofa triangle and the vector V from a
vertex of the triangle to the camera. Now suppose N points to the outside of
the object. In order to classify the triangle as front-facing or back-facing, we
compute the angle between N and V and check whether they're within 90°
of each other.

Hidden Surface Removal 159

160

Chapter 12

We can again use the properties of the dot product to make this simpler.
Remember that if « is the angle between N and ‘7, then

(N. V)

———— = cos(a)
[NV

Because cos(a) is non-negative for || < 90°, we only need to know
the sign of this expression to classify a triangle as front-facing or back-facing.
Note that |N| and | V| are always positive, so they don’t affect the sign of
the expression. Therefore

sign((ﬁ, ‘7>) = sign(cos(c))

The classification criterion is simply this:

(
(

) <0 Backfacing

N,V
N,V)>0 Frontfacing

The edge case (N, V) = 0 corresponds to the case where we’re looking
at the edge of a triangle head on—that is, when the camera and the triangle
are coplanar. We can classify this triangle either way without affecting the
result much, so we choose to classify it as back-facing to avoid dealing with
degenerate triangles.

Where do we get the normal vector from? It turns out there’s a vector
operation, the cross product A x B, that takes two vectors A and B and pro-
duces a vector perpendicular to both (for a definition of this operation, see
the Linear Algebra appendix. In other words, the cross product of two vec-
tors on the surface of a triangle is a normal vector of that triangle. We can
easily get two vectors on the triangle by subtracting its vertices from each
other. So computing the direction of the normal vector of the triangle ABC
is straightforward:

V1= -A
Vo=C-A
N=V] x Vo

Note that “the direction of the normal vector” is not the same as “the
normal vector.” There are two reasons for this. The first one is that |]<7 |
isn’t necessarily equal to 1. This isn’t really important because normalizing N
would be trivial and because we only care about the sign of (N, V).

The second reason is that if N is a normal vector of ABC, so is N, and
in this case we care deeply about the direction N points in, because this is
exactly what lets us classify triangles as either front-facing or back-facing.

Moreover, the cross product of two vectors is not commutative:

171 X V} = —(V; X Y71). In other words, the order of the vectors in this op-
eration matters. And since we defined V; and Vo in terms of A, B, and C,
this means the order of the vertices in a triangle matters. We can’t treat the
triangles ABC and ACB as the same triangle anymore.

Fortunately, none of this is random. Given the definition of the cross
product operation, the way we defined Vj and Vo, and the coordinate sys-
tem we use (X to the right, Y up, Z forward), there is a very simple rule that
determines the direction of the normal vector: if the vertices of the trian-
gle ABC are in clockwise order when you look at them from the camera, the
normal vector as calculated above will point toward the camera—that is, the
camera is looking at the front face of the triangle.

We just need to keep this rule in mind when designing 3D models man-
ually and list the vertices of each triangle in clockwise order when looking at
its front face, so that their normals point “out” when we compute them this
way. Of course, the example cube model we’ve been using so far follows this
rule.

Summary

In this chapter, we made our renderer, which could previously only render
wireframe objects, capable of rendering solid-looking objects. This is more
involved than just using DrawFilledTriangle instead of DrawWireframeTriangle,
because we need triangles close to the camera to obscure triangles further
away from the camera.

The first idea we explored was to draw the triangles from back to front,
but this had a few drawbacks that we discussed. A better idea is to work
at the pixel level; this idea led us to a technique called depth buffering,
which produces correct results regardless of the order in which we draw the
triangles.

We finally explored an optional but valuable technique that doesn’t
change the correctness of the results, but can save us from rendering ap-
proximately half of the triangles of the scene: back face culling. Since all
the back-facing triangles of a closed object are covered by all its front-facing
triangles, there’s no need to draw the back-facing triangles at all. We pre-
sented a simple algebraic way to determine whether a triangle is front- or
back-facing.

Now that we can render solid-looking objects, we’ll devote the rest of
this book to making these objects look more realistic.

Hidden Surface Removal 161

SHADING

Let’s continue making our images more
realistic; in this chapter, we’ll examine how
to add lights to the scene and how to illumi-
nate the objects it contains. First, let’s look at a
bit of terminology.

Shading vs. lllumination

The title of this chapter is “Shading,” not “Illumination”; these are two dif-
ferent but closely related concepts. Illumination refers to the math and al-
gorithms necessary to compute the effect of light on a single point in the
scene; shading deals with techniques that extend the effect of light on a dis-
crete set of points to entire objects.

In Chapter 3, we looked at all we need to know about illumination. We
can define ambient, point, and directional lights, and we can compute the

164

illumination at any point in the scene given its position and a surface normal
at that point:

IP=IA+iI" <N’L_‘;> + <I€l"7>
1 = = = =
INTILi| \ [Ril V]

=1
This illumination equation expresses how light illuminates a point in the
scene. The way this worked in our raytracer is exactly the same way it works
in our rasterizer.
The more interesting part, which we’ll explore in this chapter, is how to
extend the “illumination at a point” algorithms we developed into “illumina-
tion at every point of a triangle” algorithms.

Flat Shading

Chapter 13

Let’s start simple. Since we can compute illumination at a point, we can just
pick any point in a triangle (for example, its center), compute the illumina-
tion at that point, and use it to shade the whole triangle. To do the actual
shading, we can multiply the color of the triangle by the illumination value.
Figure 13-1 shows the results.

Figure 13-1: In flat shading, we compute illumination at the center
of the triangle and use it for the entire triangle.

The results are promising. Every point in a triangle has the same nor-
mal, so as long as a light is reasonably far from it, the light vectors for ev-

ery point are approximately parallel and every point receives approximately
the same amount of light. The discontinuity between the two triangles that
make up each side of the cube, especially visible on the green face in Fig-
ure 13-1, is a consequence of the light vectors being approximately, but not
exactly, parallel.

So what happens if we try this technique with an object for which every
point has a different normal, like the sphere in Figure 13-2?

Figure 13-2: Flat shading works reasonably well for objects with flat
faces, but not so well for objects that are supposed to be curved.

Not so good. It is very obvious that the object is not a true sphere, but
an approximation made out of flat, triangular patches. Because this kind of
illumination makes curved objects look flat, it’s called flat shading.

Gouraud Shading

How can we remove these discontinuities in lighting? Instead of computing
illumination only at the center of a triangle, we can compute illumination

at its three vertices. This gives us three illumination values between 0.0 and
1.0, one for each vertex of the triangle. This puts us in exactly the same situ-
ation as Chapter 8: we can use DrawShadedTriangle directly, using the illumina-
tion values as the “intensity” attribute.

Shading 165

166

Chapter 13

This technique is called Gouraud shading, after Henri Gouraud, who
came up with the idea in 1971. Figure 13-3 shows the results of applying it
to the cube and the sphere.

Figure 13-3: In Gouraud shading, we compute illumination at the
vertices of the triangle and interpolate them across its surface.

The cube looks better: the discontinuity is gone, because both triangles
of each face share two vertices and they have the same normal, so the illumi-
nation at these two vertices is identical for both triangles.

The sphere, however, still looks faceted, and the discontinuities on its
surface look really wrong. This shouldn’t be surprising: we’re treating the
sphere as a collection of flat surfaces. In particular, despite every triangle
sharing vertices with its neighboring triangles, they have different normals.
Figure 13-4 shows the problem.

Figure 13-4: We get two different values for the illumination at the shared
vertex, because they depend on the normals of the triangles, which are different.

Let’s take a step back. The fact that we’re using flat triangles to repre-
sent a curved object is a limitation of our techniques, not a property of the
object itself.

Each vertex in the sphere model corresponds to a point on the sphere,
but the triangles they define are just an approximation of its surface. It
would be a good idea to make the vertices in the model represent the points
in the sphere as closely as possible. That means, among other things, using
the actual sphere normals for each vertex, as shown in Figure 13-5.

™ 7

Figure 13-5: We can give each vertex the normal of the curved surface it represents.

Note that this doesn’t apply to the cube; even though triangles share
vertex positions, each face needs to be shaded independently of the others.
There’s no single “correct” normal for the vertices of a cube.

Our renderer has no way to know whether a model is supposed to be an
approximation of a curved object or the exact representation of a flat one.
After all, a cube is a very crude approximation of a sphere! To solve this,
we’ll make the triangle normals part of the model, so its designer can make
this decision.

Some objects, like the sphere, have a single normal per vertex. Other
objects, like the cube, have a different normal for each triangle that uses the
vertex. So we can’t make the normals a property of the vertices; they need to
be a property of the triangles that use them:

model {
name = cube
vertices {
0-=(-1, -1, -1)
1=(-1, -1, 1)
2 =(-1, 1, 1)
}
triangles {
0= {

Shading 167

168

Chapter 13

vertices = [0, 1, 2]
normals = [('1) 0, 0)) ('11 0, 0)) (_1) 0, 0)]

Figure 13-6 shows the scene rendered using Gouraud shading and the
appropriate vertex normals.

Figure 13-6: Gouraud shading with normal vectors specified in the model.
The cubes still look like cubes, and the sphere now looks like a sphere.

The cubes still look like cubes, and the sphere now looks remarkably like
a sphere. In fact, you can only tell it’s made out of triangles by looking at
its outline. This could be improved by using more, smaller triangles, at the
expense of requiring more computing power.

Gouraud shading starts breaking down when we try to render shiny ob-
jects, though; the specular highlight on the sphere is decidedly unrealistic.

This is an indication of a more general problem. When we move a point
light very close to a big face, we’d naturally expect it to look brighter and the
specular effects to become more pronounced; however, Gouraud shading
produces the exact opposite (Figure 13-7).

Figure 13-7: Contrary to our expectations, the closer the point light is to a face, the darker
it looks.

We expect points near the center of the triangle to receive a lot of light,
because L and N are roughly parallel. However, we’re not computing light-
ing at the center of the triangle, but at its vertices. There, the closer the light
is to the surface, the bigger the angle with the normal, so they receive little
illumination. This means that every interior pixel will end up with an inten-
sity value that is the result of interpolating between two small values, which
is also a low value, as shown in Figure 13-8.

N N

L
~90° ¢ ~90°
1.
Dark Interpolated dark Dark

Figure 13-8: Interpolating illumination from the vertices, which are dark,
results in a dark center, although the normal is parallel to the light vector
at that point.

So, what to do?

Phong Shading

We can overcome the limitations of Gouraud shading, but as usual, there’s a
trade-off between quality and resource usage.

Flat shading involved a single illumination calculation per triangle.
Gouraud shading requires three illumination calculations per triangle, plus
the interpolation of a single attribute, the illumination, across the triangle.
The next step in quality requires us to calculate illumination at every pixel of
the triangle.

This doesn’t sound particularly complex from a theoretical point of
view; we’re computing lighting at one or three points already, and we were
computing per-pixel lighting for the raytracer after all. What’s tricky here is
figuring out where the inputs to the illumination equation come from.

Shading 169

170

Chapter 13

Recall that the full illumination equation, with ambient, diffuse, and specu-

lar components, is:

n g - o s
(N, Li) (R, V)
Ip=14+ Ii(———— + -
2 INTILi[\ [R[V]

=1

First, we need L. For directional lights, Lis given. For point lights, Lis
defined as the vector from the point in the scene, P, to the position of the
light, Q. However, we don’t have Q for every pixel of the triangle, but only

for the vertices.
What we do have is the projection of P; that is, the x' and y' we’re about

to draw on the canvas! We know that

We also happen to have an interpolated but geometrically correct value
for % as part of the depth-buffering algorithm, so

x_x
1
d
/
_D
=t
d
1
y =

We also need V. This is the vector from the camera (which we know) to
P (which we just computed), so V is simply P- C.

Next, we need N. We only know the normals at the vertices of the tri-
angle. When all you have is a hammer, every problem looks like a nail; our
hammer is—you probably guessed it—linear interpolation of attribute val-
ues. So let’s take the values of Ny, Ny, and N, at each vertex and treat each
of them as an attribute we can linearly interpolate. Then, at every pixel, we
reassemble the interpolated components into a vector, normalize it, and use

it as the normal at that pixel.

This technique is called Phong shading, after Bui Tuong Phong, who in-
vented it in 1973. Figure 13-9 shows the results.

Figure 13-9: Phong shading. The surface of the sphere looks smooth
and the specular highlight is clearly visible.

You can find a live implementation of this algorithm at https:;//
gabrielgambetta.com/cgfs/shading-demo.

The sphere looks much better now. Its surface displays the proper cur-
vature, and the specular highlights look well defined. The contour, however,
still betrays the fact that we’re rendering an approximation made of trian-
gles. This is not a shortcoming of the shading algorithm, which only deter-
mines the color of each pixel of the surface of the triangles but has no con-
trol over the shape of the triangles themselves. This sphere approximation
uses 420 triangles; we could get a smoother contour by using more triangles,
at the cost of worse performance.

Phong shading also solves the problem with the light getting close to a
face, now giving the expected results (Figure 13-10).

Shading 171

https://gabrielgambetta.com/cgfs/shading-demo
https://gabrielgambetta.com/cgfs/shading-demo

Figure 13-10: The closer the light is to the surface, the brighter and better defined the
specular highlight looks.

At this point, we’ve matched the capabilities of the raytracer developed
in Part I, except for shadows and reflections. Using the exact same scene
definition, Figure 13-11 shows the output of the rasterizer we’re developing.

Figure 13-11: The reference scene, rendered by the rasterizer

For reference, Figure 13-12 shows the raytraced version of the same
scene.

172 Chapter 13

Figure 13-12: The reference scene, rendered by the raytracer

The two versions look almost identical, despite using vastly different
techniques. This is expected, since the scene definition is identical. The only
visible difference can be found in the contour of the spheres: the raytracer
renders them as mathematically perfect objects, but we use an approxima-
tion made of triangles for the rasterizer.

Another difference is the performance of the two renderers. This is very
hardware- and implementation-dependent, but generally speaking, rasteriz-
ers can produce full-screen images of complex scenes up to 60 times per sec-
ond or more, which makes them suitable for interactive applications such as
videogames, while raytracers may take multiple seconds to render the same
scene once. This difference might tend to disappear in the future; advances
in hardware in recent years are making raytracer performance much more
competitive with that of rasterizers.

Summary

In this chapter, we added illumination to our rasterizer. The illumination
equation we use is exactly the same as the one in Chapter 3, because we’re
using the same lighting model. However, where the raytracer computed the
illumination equation at each pixel, our rasterizer can support a variety of
different techniques to achieve a specific trade-off between performance and
image quality.

Shading 173

174

Chapter 13

The fastest shading algorithm, which also produces the least appealing
results, is flat shading: we compute the illumination of a single point in a tri-
angle and use it for every pixel in that triangle. This results in a very faceted
appearance, especially for objects that approximate curved surfaces such as
spheres.

One step up the quality ladder, we have Gouraud shading: we compute
the illumination of the three vertices of a triangle and then interpolate this
value across the face of the triangle. This gives objects a smoother appear-
ance, including curved objects. However, this technique fails to capture
more subtle lighting effects, such as specular highlights.

Finally, we studied Phong shading. Much like our raytracer, it computes
the illumination equation at every pixel, producing the best results and also
the worst performance. The trick in Phong shading is knowing how to com-
pute all the necessary values to evaluate the illumination equation; once
again, the answer is linear interpolation—in this case, of normal vectors.

In the next chapter, we’ll add even more detail to the surface of our tri-
angles, using a technique that we haven’t studied for the raytracer: texture

mapping.

TEXTURES

Our rasterizer can render objects like

cubes or spheres. But we usually don’t
want to render abstract geometric objects

like cubes and spheres; instead, we want to ren-

der real-world objects, like crates and planets or dice
and marbles. In this chapter, we’ll look at how we can
add visual detail to the surface of our objects by using
lextures.

Painting a Crate

Let’s say we want our scene to have a wooden crate. How do we turn a cube
into a wooden crate? One option is to add a lot of triangles to replicate the
grain of the wood, the heads of the nails, and so on. This would work, but
it would add a lot of geometric complexity to the scene, resulting in a big
performance hit.

176

Chapter 14

Another option is to fake the details: instead of modifying the geome-
try of an object, we just “paint” something that looks like wood on top of it.
Unless you’re looking at the crate from up close, you won’t notice the differ-
ence, and the computational cost is significantly lower than adding lots of
geometric detail.

Note that the two options aren’t incompatible: you can choose the right
balance between adding geometry and painting on that geometry to achieve
the image quality and performance you require. Since we know how to deal
with geometry, we’ll explore the second option.

First, we need an image to paint on our triangles; in this context, we call
this image a texture. Figure 14-1 shows a wooden crate texture.

Figure 14-1: Wooden crate texture (by Filter Forge—
Attribution 2.0 Generic (CC BY 2.0) license)

Next, we need to specify how this texture is applied to the model. We
can define this mapping on a per-triangle basis, by specifying which points
of the texture should go on each vertex of the triangle (Figure 14-2).

Figure 14-2: We associate a point in the texture with each vertex of the triangle.

To define this mapping, we need a coordinate system to refer to points
in the texture. Remember, a texture is just an image, represented as a rectan-
gular array of pixels. We could use x and y coordinates and talk about pixels
in the texture, but we’re already using these names for the canvas. There-
fore, we use u and v for the texture coordinates and we call the texture’s pix-
els texels (a contraction of fexture elements).

We'll fix the origin of this (u, v) coordinate system at the top-left corner
of the texture. We’ll also declare that « and v are real numbers in the range
[0, 1], regardless of the actual texel dimensions of the texture. This is very
convenient for several reasons. For example, we may want to use a lower- or
higherresolution texture depending on how much RAM we have available;
because we’re not tied to the actual pixel dimensions, we can change reso-
lutions without having to modify the model itself. We can multiply « and v
by the texture width and height respectively to get the actual texel indices ¢x
and ?y.

The basic idea of texture mapping is simple: we compute the (u, v) co-
ordinates for each pixel of the triangle, fetch the appropriate texel from the
texture, and paint the pixel with that color. But the model only specifies u
and v coordinates for the three vertices of the triangle, and we need them
for each pixel ...

Textures 177

178

Chapter 14

By now you can probably see where this is going. Yes, it’s our good
friend linear interpolation. We can use attribute mapping to interpolate the
values of u and v across the face of the triangle, giving us («,v) at each pixel.
From this we can compute (¢x, ty), fetch the texel, apply shading, and paint
the pixel with the resulting color. You can see the result of doing this in Fig-
ure 14-3.

Figure 14-3: The texture looks deformed when applied to the objects.

The results are a little underwhelming. The exterior shape of the crates
looks fine, but if you pay close attention to the diagonal planks, you’ll notice
they look deformed, as if bent in weird ways. What went wrong?

As in Chapter 12, we made an implicit assumption that turns out not to
be true: namely, that u and v vary linearly across the screen. This is clearly
not the case. Consider the wall of a very long corridor painted with alternat-
ing vertical black and white stripes. As the wall recedes into the distance, the
vertical stripes should look thinner and thinner. If we make the u coordinate
vary linearly with %', we get incorrect results, as illustrated in Figure 14-4.

Figure 14-4: linear interpolation of u and v (left) doesn’t produce the expected
perspective-correct results (right).

The situation is very similar to the one we encountered in Chapter 12,
and the solution is also very similar: although « and v aren’t linear in screen
coordinates, % and g are. (The proof'is very similar to the % proof: consider
that u varies linearly in 3D space, and substitute x and y with their screen-
space expressions.) Since we already have interpolated values of % at each
pixel, it’s enough to interpolate % and 7 and get w and v back:

<
|
IEISYES

ISAEISYES

This produces the result we expect, as you can see in Figure 14-5.

Textures 179

180

Chapter 14

Figure 14-5: Linear interpolation of u/z and v/z does produce
perspective-correct results.

Figure 14-6 shows the two results side by side, to make it easier to appre-
ciate the difference.

Figure 14-6: A comparison of the “linear u and v” result (left)
and the “linear u/z and v/z" result (right)

You can find a live implementation of this algorithm at https.//
gabrielgambetia.com/cgfs/textures-demo.

https://gabrielgambetta.com/cgfs/textures-demo
https://gabrielgambetta.com/cgfs/textures-demo

These examples look nice because the size of the texture and the size
of the triangles we’re applying it to, measured in pixels, is roughly similar.
But what happens if the triangle is several times bigger or smaller than the
texture? We’ll explore those situations next.

Bilinear Filtering

Suppose we place the camera very close to one of the cubes. We’ll see some-
thing like Figure 14-7.

Figure 14-7: A textured object rendered from up close

The image looks very blocky. Why does this happen? The triangle
on the screen has more pixels than the texture has texels, so each texel is
mapped to many consecutive pixels.

We are interpolating texture coordinates u and v, which are real values
between 0.0 and 1.0. Later, given the texture dimensions w and 4, we map
the » and v coordinates to ¢x and ¢y texel coordinates by multiplying them by
w and A respectively. But because a texture is an array of pixels with integer
indices, we round #x and ¢y down to the nearest integer. For this reason, this
basic technique is called nearest neighbor filtering.

Even if (u, v) varies smoothly across the face of the triangle, the result-
ing texel coordinates “jump” from one whole pixel to the next, causing the
blocky appearance we can see in Figure 14-7.

We can do better. Instead of rounding ¢x and ¢y down, we can interpret
a fractional texel coordinate (¢x, ty) as describing a position between four inte-
ger texel coordinates (obtained by the combinations of rounding ¢x and ty up
and down). We can take the four colors of the surrounding integer texels,
and compute a linearly interpolated color for the fractional texel. This will
produce a noticeably smoother result (Figure 14-8).

Textures 181

182

Chapter 14

Figure 14-8: A textured object rendered from up close,
using interpolated colors

Let’s call the four surrounding pixels 7L, TR, BL, and BR (for top-left,
top-right, bottom-left, and bottom-right, respectively). Let’s take the frac-
tional parts of ¢x and ¢y and call them fx and fy. Figure 14-9 shows C, the ex-
act position described by (#x, #y), surrounded by the texels at integer coordi-
nates, and its distance to them.

TL CcT TR
fx 1-fx
fy
C
1-fy
BL CB BR

Figure 14-9: We linearly interpolate a color
at C from the four texels that surround it.

First, we linearly interpolate the color at CT, which is between TL
and TR:
CTr=(01-fx)-TL+fx-TR

Note that the weight for TR is fx, not (1 — fx). This is because as fx be-
comes closer to 1.0, we want CT to become closer to TR. Indeed, if fx = 0.0,
then CT = TL, and if fx = 1.0, then CT = TR.

We can compute CB, between TL and TR, in a similar way:

CB=(1-fx)-BL+fx-BR

Finally, we compute C, linearly interpolating between C7T and CB:

C=(1-f) -BT+fy-CB

In pseudocode, we can write a function to get the interpolated color
corresponding to a fractional texel:

GetTexel(texture, tx, ty) {
fx = frac(tx)

fy = frac(ty)

tx = floor(tx)

ty = floor(ty)

TL = texture[tx][ty]

TR = texture[tx+1][ty]

BL = texture[tx][ty+1]

BR = texture[tx+1][ty+1]

CT = fx * TR + (1 - fx) * TL
(B =fx *BR + (1 - fx) * BL

return fy * (B + (1 - fy) * (T
}

This function uses floor(), which rounds a number down to the nearest
integer, and frac(), which returns the fractional part of a number, and can
be defined as x - floor(x).

This technique is called bilinear filtering (because we’re doing linear in-
terpolation twice, once in each dimension).

Mipmapping

Let’s consider the opposite situation, rendering an object from far away. In
this case, the texture has many more texels than the triangle has pixels. It
might be less evident why this is a problem, so we’ll use a carefully chosen
situation to illustrate.

Consider a square texture in which half the pixels are black and half the
pixels are white, laid out in a checkerboard pattern (Figure 14-10).

Textures 183

Figure 14-10: A black-and-white checkerboard texture

Suppose we map this texture onto a square in the viewport such that
when it’s drawn on the canvas, the width of the square in pixels is exactly
half the width of the texture in texels. This means that only one-quarter of
the texels will actually be used.

We’d intuitively expect the square to look gray. However, given the way
we’re doing texture mapping, we might be unlucky and get all the white pix-
els, or all the black pixels. It’s true that we might be lucky and get a 50,/50
combination of black and white pixels, but the 50-percent gray we expect is
not guaranteed. Take a look at Figure 14-11, which shows the unlucky case.

184 Chapter 14

Figure 14-11: Mapping a big texture on a small object can lead to unexpected results,
depending on which texels happen to be selected.

How to fix this? Each pixel of the square represents, in some sense, a
2 x 2 texel area of the texture, so we could compute the average color of that
area and use that color for the pixel. Averaging black and white pixels would
give us the gray we are looking for.

However, this can get very computationally expensive very fast. Suppose
the square is even farther away, so that it’s one-tenth of the texture width.
This means every pixel in the square represents a 10 x 10 texel area of the
texture. We’d have to compute the average of 100 texels for every pixel we
want to render!

Fortunately, this is one of those situations where we can replace a lot of
computation with a bit of extra memory. Let’s go back to the initial situa-
tion, where the square was half the width of the texture. Instead of comput-

Textures 185

186

Chapter 14

ing the average of the four texels we want to render for every pixel again and
again, we could precompute a texture of half the original size, where every
texel in the half-size texture is the average of the corresponding four texels
in the original texture. Later, when the time comes to render a pixel, we can
just look up the texel in this smaller texture, or even apply bilinear filtering
as described in the previous section.

This way, we get the better rendering quality of averaging four pixels,
but at the computational cost of a single texture lookup. This does require
a bit of preprocessing time (when loading a texture, for example) and a bit
more memory (to store the full-size and half-size textures), but in general it’s
a worthwhile trade-off.

What about the 10X size scenario we discussed above? We can take this
technique further and also precompute one-quarter-, one-eighth-, and one-
sixteenth-size versions of the original texture (down toa 1 x 1 texture if we
wanted to). Then, when rendering a triangle, we’d use the texture whose
scale best matches its size and get all the benefits of averaging hundreds, if
not thousands, of pixels at no extra runtime cost.

This powerful technique is called mipmapping. The name is derived from
the Latin expression multum in parvo, which means “much in little.”

Computing all these smaller-scale textures does come at a memory cost,
but it’s surprisingly smaller than you might think.

Say the original area of the texture, in texels, is A, and its width is w. The
width of the half-width texture is g, but it requires only % texels; the quarter-
width texture requires 1’% texels; and so on. Figure 14-12 shows the original
texture and the first three reduced versions.

|1 A/4

Figure 14-12: A texture and its progressively smaller mipmaps

We can express the sum of the texture sizes as an infinite series:

A A A — A
A+ —+ —+—+ . . = —
4 16 64 4n
n=0
This series converges to A-4/3, or A - 1.3333, meaning that all the
smaller textures down to 1 x 1 texel only take one-third more space than

the original texture.

Trilinear Filtering

Let’s take this one step further. Imagine an object far away from the camera.
We render it using the mipmap level most appropriate for its size.

Now imagine the camera moves toward the object. At some point, the
choice of the most appropriate mipmap level will change from one frame to
the next, and this will cause a subtle but noticeable difference.

When choosing a mipmap level, we choose the one that most closely
matches the relative size of the texture and the square. For example, for
the square that was 10 times smaller than the texture, we might choose the
mipmap level that is 8 times smaller than the original texture, and apply bi-
linear filtering on it. However, we could also consider the fwo mipmap levels
that most closely match the relative size (in this case, the ones 8 and 16 times
smaller) and linearly interpolate between them, depending on the “distance”
between the mipmap size ratio and the actual size ratio.

Because the colors that come from each mipmap level are bilinearly in-
terpolated and we apply another linear interpolation on top, this technique
is called trilinear filtering.

Summary

In this chapter, we have given our rasterizer a massive jump in quality. Be-
fore this chapter, each triangle could have a single color; now we can draw
arbitrarily complex images on them.

We have also discussed how to make sure the textured triangles look
good, regardless of the relative size of the triangle and the texture. We pre-
sented bilinear filtering, mipmapping, and trilinear filtering as solutions to
the most common causes of low-quality textures.

Textures 187

EXTENDING THE RASTERIZER

one: with a set of possible extensions to the
rasterizer we've developed in the preceding
chapters.

Normal Mapping

In Chapter 13, we saw how the normal vectors of a surface have a big im-
pact on its appearance. For example, the right choice of normals can make a
faceted object look smoothly curved; this is because the right choice of nor-
mals changes the way light interacts with the surface, which in turn changes
the way our brain guesses the shape of the object. Unfortunately, there’s
not much more we can do by interpolating normals beyond making surfaces
look smoothly curved.

In Chapter 14, we saw how we could add fake detail to a surface by
“painting” on it. This technique, called texture mapping, gives us much
finer-grained control over the appearance of a surface. However, texture
mapping doesn’t change the shape of the triangles—they’re still flat.

190

Chapter 15

Normal mapping combines both ideas. We can use normals to change
the way light interacts with a surface and thus change the apparent shape
of the surface; we can use attribute mapping to assign different values of an
attribute to different parts of a triangle. By combining the two ideas, normal
mapping lets us define surface normals at the pixel level.

To do this, we associate a normal map to each triangle. A normal map
is similar to a texture map, but its elements are normal vectors instead of
colors. At rendering time, instead of computing an interpolated normal like
Phong shading does, we use the normal map to get a normal vector for the
specific pixel we're rendering, in the same way that texture mapping gets a
color for that specific pixel. Then we use this vector to compute lighting at
that pixel.

Figure 15-1 shows a flat surface with a texture map applied, and the ef-
fects of different light directions when a normal map is also applied.

{a) No normal map

(b) Normal map plus light from the left (c) Normal map plus light from the right

Figure 15-1: The effect of normal mapping over flat geometry

All three images in Figure 15-1 are renders of a flat square (that is, two
triangles) with a texture, as seen in (a). When we add a normal map and the
appropriate per-pixel shading, we create the illusion of extra geometrical
detail. In (b) and (c), the shading of the diamonds depends on the direction
of the incident light, and our brain interprets this as the diamonds having
volume.

There are a couple of practical considerations to keep in mind. First,
the orientations of the vectors in the normal map are relative to the surface
of the triangle they apply to. The coordinate system used for this is called
tangent space, where two of the axes (usually X and Z) are tangent to (that
is, embedded in) the surface and the remaining vector is perpendicular to
the surface. At rendering time, the normal vector of the triangle, expressed
in camera space, is modified according to the vector in the normal map to
obtain a final normal vector that can be used for the illumination equations.
This makes a normal map independent of the position and orientation of
the object in the scene.

Second, a very popular way to encode normal maps is as textures, map-
ping the values of X, ¥, and Z to R, G, and B values. This gives normal maps
a very characteristic purple-ish appearance, because purple, a combination
of red and blue but no green, encodes flat areas of the surface. Figure 15-2
shows the normal map used in the examples in Figure 15-1.

Figure 15-2: The normal map used for the examples
in Figure 15-1, encoded as a RGB texture

While this technique can drastically improve the perceived complexity
of surfaces in a scene, it’s not without limitations. For example, since flat
surfaces remain flat, it can’t change the silhouette of an object. For the same
reason, the illusion breaks down when a normal-mapped surface is viewed
from an extreme angle or up close, or when the features represented by the
normal map are too big compared to the size of the surface. This technique
is better suited to subtle detail, such as pores on the skin, the pattern on a

Extending the Rasterizer 191

192

stucco wall, or the irregular appearance of an orange peel. For this reason,
the technique is also known as bump mapping.

Environment Mapping

Chapter 15

One of the most striking characteristics of the raytracer we developed is the
ability to show objects reflecting one another. It is possible to create a rela-
tively convincing, but somewhat fake, implementation of reflections in our
rasterizer.

Imagine we have a scene representing a room in a house, and we want to
render a reflective object placed in the middle of the room. For each pixel
representing the surface of that object, we know the 3D coordinates of the
point it represents, the surface normal at that point, and, since we know the
position of the camera, we can also compute the view vector to that point.
We could reflect the view vector with respect to the surface normal to obtain
a reflection vector, just like we did in Chapter 4.

At this point, we want to know the color of the light coming from the
direction of the reflection vector. If this were a raytracer, we’d just trace a
ray in that direction and find out. However, this is not a raytracer. What to
do?

Environment mapping provides one possible answer to this question. Sup-
pose that before rendering the objects inside the room, we place a camera in
the middle of it and render the scene six times—once for each perpendicular
direction (up, down, left, right, front, back). You can imagine the camera is
inside an imaginary cube, and each side of the cube is the viewport of one of
these renders. We keep these six renders as textures. We call this set of six
textures a cube map, which is why this technique is also called cube mapping.

Then we render the reflective object. When we get to the point of need-
ing a reflected color, we can use the direction of the reflected vector to
choose one of the textures of the cube map, and then a texel of that texture
to get an approximation of the color seen in that direction—all without trac-
ing a single ray!

This technique has some drawbacks. The cube map captures the appear-
ance of a scene from a single point. If the reflective object we’re rendering
isn’t located at that point, the position of the reflected objects won’t fully
match what we would expect, so it will become clear that this is just an ap-
proximation. This would be especially noticeable if the reflective object were
to move within the room, because the reflected scene wouldn’t change as
the object moves.

This limitation also suggests the best applications for the technique: if
the “room” is big enough and distant enough from the object—that is, if the
movement of the object is small with respect to the size of the room—the dif-
ference between the true reflection and the pre-rendered environment maps

can go unnoticed. For example, this would work very well for a scene repre-
senting a reflective spaceship in deep space, since the “room” (the distant
stars and galaxies) is infinitely far away for all practical purposes.

Another drawback is that we’re forced to split the objects in the scene
into two categories: static objects that are part of the “room,” which are seen
in reflections, and dynamic objects that can be reflective. In some cases, this
might be clear (walls and furniture are part of the room; people aren’t), but
even then, dynamic objects wouldn’t be reflected on other dynamic objects.

A final drawback worth mentioning is related to the resolution of the
cube maps. Whereas in the raytracer we could trace very precise reflections,
in this case we need to make a trade-off between accuracy (higher-resolution
cube map textures produce sharper reflections) and memory consumption
(higher-resolution cube map textures require more memory). In practice,
this means that environment maps won’t produce reflections that are as
sharp as true raytraced reflections, especially when looking at reflective ob-
jects up close.

Shadows

The raytracer we developed featured geometrically correct, very well-defined
shadows. These were a very natural extension to the core algorithm. The ar-
chitecture of a rasterizer makes it slightly more complex to implement shad-
ows, but not impossible.

Let’s start by formalizing the problem we’re trying to solve. In order to
render shadows correctly, every time we compute the illumination equation
for a pixel and a light, we need to know whether the pixel is actually illumi-
nated by the light or whether it’s in the shadow of an object with respect to
that light.

With the raytracer, we could answer this question by tracing a ray from
the surface to the light; in the rasterizer, we don’t have such a tool, so we’ll
have to take a different approach. Let’s explore two different approaches.

Stencil Shadows

Stencil shadows is a technique to render shadows with very well-defined edges
(imagine the shadows cast by objects on a very sunny day). These are often
called hard shadows.

Our rasterizer renders the scene in a single pass; it goes over every tri-
angle in the scene and renders it on the canvas, computing the full illumi-
nation equation every time (on a per-triangle, per-vertex, or per-pixel basis,
depending on the shading algorithm). At the end of this process, the canvas
contains the final render of the scene.

Extending the Rasterizer 193

194

Chapter 15

We’ll start by modifying the rasterizer to render the scene in several
passes, one for each light in the scene (including the ambient light). Like be-
fore, each pass goes over every triangle, but it computes the illumination
equation taking into account only the light associated with that pass.

This gives us a set of images of the scene illuminated by each light sep-
arately. We can compose them together—that is, add them pixel by pixel—
giving us the final render of the scene. This final image is identical to the
image produced by the single-pass version. Figure 15-3 shows three light
passes and the final composite for our reference scene.

'a) Ambient light (b) First light
c) Second light (d) Final composite

Figure 15-3: A scene rendered using one pass per light

This lets us simplify our goal of “rendering a scene with shadows from
multiple lights” into “rendering a scene with shadows from a single light,
many times.” Now we need to find a way to render a scene illuminated by a
single light, while leaving the pixels that are in shadow from that light com-
pletely black.

For this, we introduce the stencil buffer. Like the depth buffer, it has the
same dimensions as the canvas, but its elements are integers. We can use it
as a stencil for rendering operations, for example, modifying our rendering
code to draw a pixel on the canvas only if the corresponding element in the
stencil buffer has a value of zero.

If we can set up the stencil buffer in such a way that illuminated pixels
have a value of zero and pixels in shadow have a nonzero value, we can use it
to draw only the pixels that are illuminated.

Creating Shadow Volumes

To set up the stencil buffer, we use something called shadow volumes. A
shadow volume is a 3D polygon “wrapped” around the volume of space
that’s in shadow from a light.

We construct a shadow volume for each object that might cast a shadow
on the scene. First, we determine which edges are part of the silhouette of
the object; these are the edges between front-facing and back-facing trian-
gles (we can use the dot product to classify the triangles, like we did for the
back-face culling technique in Chapter 12). Then, for each of these edges, we
extrude them away from the direction of the light, all the way to infinity—or,
in practice, to a really big distance beyond the scene.

This gives us the “sides” of the shadow volume. The “front” of the vol-
ume is made by the front-facing triangles of the object itself, and the “back”
of the volume can be computed by creating a polygon whose edges are the
“far” edges of the extruded sides.

Figure 15-4 shows the shadow volume created this way for a cube with
respect to a point light.

Extending the Rasterizer 195

%

Light

Shadow

volume

Front faces (with respect to the light)

Figure 15-4: The shadow volume of a cube with respect to a point light

196

Chapter 15

Next, we’ll see how to use the shadow volumes to determine which pixels
in the canvas are in shadow with respect to a light.

Counting Shadow Volume-Ray Intersections

Imagine a ray starting from the camera and going into the scene until it hits
a surface. Along the way, it might enter and leave any number of shadow
volumes.

We can keep track of this with a counter that starts at zero. Every time
the ray enters a shadow volume, we increment the counter; every time it
leaves, we decrement it. We stop when the ray hits a surface and look at the
counter. Ifit’s zero, it means the ray entered as many shadow volumes as it
left, so the point must be illuminated; if it’s not zero, it means the ray is in-
side at least one shadow volume, so the point must be in shadow. Figure 15-
5 shows a few examples of this.

However, this only works if the camera itself is not inside a shadow vol-
ume! If a ray starts inside the shadow volume and doesn’t leave it before hit-
ting the surface, our algorithm would incorrectly conclude that it’s illumi-
nated.

Shadow

volume

Wall

0 (light) V'W 0 (light)

Light \'

Figure 15-5: Counting the intersections between rays and shadow volumes tells us whether a point along
the ray is illuminated or in shadow.

Camera

We could check for this condition and adjust the counter accordingly,
but counting how many shadow volumes a point is inside of is an expensive
operation. Fortunately, there’s a way to overcome this limitation that is sim-
pler and cheaper, if somewhat counter-intuitive.

Rays are infinite, but shadow volumes aren’t. This means a ray always
starts and ends outside a shadow volume. This, in turn, means that a ray al-
ways enters a shadow volume as many times as it leaves it; the counter for the
entire ray must always be zero.

Suppose we keep track of the intersections between the ray and the
shadow volume after the ray hits the surface. If the counter has a value of
zero, then the value must also be zero before the ray hits the surface. If the
counter has a nonzero value, it must have the opposite value on the other
side of the surface.

This means counting intersections between the ray and the shadow vol-
ume before the ray hits the surface is equivalent to counting the intersec-
tions after it—but in this case, we don’t have to worry about the position of
the camera! Figure 15-6 shows how this technique always produces correct
results.

Extending the Rasterizer 197

198

Chapter 15

Shadow

volume

Wall
0 (light)

Light

Figure 15-6: The counters have a value of zero for points that receive light,
and a nonzero value for points that are in shadow, regardless of
whether the camera is inside or outside the shadow volume.

Setting up the Stencil Buffer

We’re working with a rasterizer, not with a raytracer, so we need to find a
way to keep these counters without actually computing any intersections be-
tween rays and shadow volumes. We can do this by using the stencil buffer.

First, we render the scene as illuminated only by the ambient light. The
ambient light casts no shadows, so we can do this without any changes to
the rasterizer. This gives us one of the images we need to compose the final
render, but it also gives us depth information for the scene, as seen from the
camera, contained in the depth buffer. We need to keep this depth buffer
for the next steps.

Next, for each light, we follow these steps:

1. “Render” the back faces of the shadow volumes to the stencil buffer,
incrementing its value whenever the pixel fails the depth buffer test.
This counts the number of times the ray leaves a shadow volume
after hitting the closest surface.

2. “Render” the front faces of the shadow volumes to the stencil buffer,
decrementing its value whenever the pixel fails the depth buffer test.
This counts the number of times the ray enters a shadow volume
after hitting the closest surface.

Note that during the “rendering” steps, we're only interested in mod-
ifying the stencil buffer; there’s no need to write pixels to the canvas, and
therefore no need to calculate illumination or texturing. We also don’t write
to the depth buffer, because the sides of the shadow volumes aren’t actually
physical objects in the scene. Instead, we use the depth buffer we computed
during the ambient lighting pass.

After doing this, the stencil buffer has zeros for the pixels that are illu-
minated and other values for the pixels that are in shadow. So we render
the scene normally, illuminated by the single light corresponding to this
pass, calling PutPixel only on the pixels where the stencil buffer has a value
of zero.

Repeating this process for every light, we end up with a set of images
corresponding to the scene illuminated by each of the lights, with shadows
correctly taken into account. The final step is to compose all the images into
a final render of the scene by adding them together pixel by pixel.

The idea of using the stencil buffer to render shadows dates back to
the early 1990s, but the first implementations had several drawbacks. The
depth-fail variant described here was independently discovered several times
during 1999 and 2000, most notably by John Carmack while working on
Doom 3, which is why this variant is also known as Carmack’s Reverse.

Shadow Mapping

The other well-known technique to render shadows in a rasterizer is called
shadow mapping. This renders shadows with less defined edges (imagine the
shadows cast by objects on a cloudy day). These are often called soft shadows.

To reiterate, the question we’re trying to answer is, given a point on a
surface and a light, does the point receive illumination from that light? This
is equivalent to determining whether there’s an object between the light and
the point.

With the raytracer, we traced a ray from the point to the light. In some
sense, we're asking whether the point can “see” the light, or, equivalently,
whether the light can “see” the point.

This leads us to the core idea of shadow mapping. We render the scene
from the point of view of the light, preserving the depth buffer. Similar to
how we created the environment maps we described above, we render the
scene six times and end up with six depth buffers. These depth buffers,
which we call shadow maps, let us determine the distance to the closest sur-
face the light can “see” in any given direction.

The situation is slightly more complicated for directional lights, because
these have no position to render from. Instead, we need to render the scene
from a direction. This requires using an orthographic projection instead of our
usual perspective projection. With perspective projection and point lights,

Extending the Rasterizer 199

200

every ray starts from a point; with orthographic projection and directional
lights, every ray is parallel to each other, sharing the same direction.

When we want to determine whether a point is in shadow or not, we
compute the distance and the direction from the light to the point. We use
the direction to look up the corresponding entry in the shadow map. If this
depth value is smaller than the distance from the point to the light, it means
there’s a surface that is closer to the light than the point we’re illuminating,
and therefore the point is in the shadow of that surface; otherwise, the light
can “see” the point unobstructed, so the point is illuminated by the light.

Note that the shadow maps have a limited resolution, usually lower than
the canvas. Depending on the distance and the relative orientation of the
point and the light, this might cause the shadows to look blocky. To avoid
this, we can sample the depth of the surrounding depth entries as well and
determine whether the point lies on the edge of a shadow (as evidenced
by a depth discontinuity in the surrounding entries). If this is the case, we
can use a technique similar to bilinear filtering, as we did in Chapter 14, to
come up with a value between 0.0 and 1.0 representing khow much the point
is visible from the light and multiply it by the illumination of the light; this
gives the shadows created by shadow mapping their characteristic blurry
appearance. Other ways to avoid the blocky appearance involve sampling
the shadow map in different ways—for example, look into percentage closer
filtering.

Summary

Chapter 15

Like in Chapter 5, this chapter briefly introduced several ideas you can ex-
plore by yourself. These extend the rasterizer developed over the previous
chapters to bring its features closer to those of the raytracer, while retain-
ing its speed advantage. There’s always a trade-off, and in this case it comes
in the form of less accurate results or increased memory consumption, de-
pending on the algorithm.

AFTERWORD

You’ve created a raytracer and a rasterizer
and gained a good conceptual understanding
of the algorithms and math that power them.

However, as I explained in the introduction, it’s impossible to cover the
entirety of 3D rendering in a single book. Here’s a few topics you might
want to explore on your own to expand your horizons:

Global illumination, including radiosity and path tracing Find out
how deep the “ambient light” rabbit hole goes!

Physically based rendering Illumination and shading models that
don’t just look good, but model real-life physics.

Voxel rendering Think Minecraft, or MRI scans in hospitals.

Level-of-detail algorithms This includes offline and dynamic mesh
simplification, impostors, and billboards. These algorithms are how we
efficiently render forests with billions of plants, crowds of millions of
people, or extremely detailed 3D models.

Acceleration structures This includes binary space partition trees, k-d
trees, quadtrees, and octrees. These structures help efficiently render
massive scenes, such as an entire city.

Terrain rendering How to efficiently render a terrain model that
might be as big as a country yet have human-scale detail.

Atmospheric effects and particle systems Fog, rain, and smoke, but
also some less intuitive materials like grass and hair.

Image-based lighting Similar to environment mapping, but for diffuse
lighting.
High dynamic range, gamma correction The color representation

rabbit hole also goes deep.

Caustics Also known as “the moving white patterns at the bottom of
the swimming pool.”

Procedural generation of textures and models Add more variety and
possibly infinitely big scenes.

Hardware acceleration Using OpenGL, Vulkan, DirectX, and others
to run graphics algorithms on GPUs.

Of course, there are many other topics, and that’s just 3D rendering!
Computer graphics is an even broader subject. Here are some areas you
might want to investigate:

Font rendering This is surprisingly more complex than you might
think.

Image compression How to store images in the least amount of space.

Image processing (such as transforming and filtering) Think Insta-
gram filters.

Image recognition Is that a dog or a cat?

Curve rendering, including Bezier curves and splines Find out what
these weird arrows on the curves of your favorite drawing program really
are!

Computational photography How does the camera on your phone
take such good pictures with almost no light?

Image segmentation Before you can “blur the background” of your
video call, you need to determine which pixels are background and
which aren’t.

Congratulations again on taking your first step into the world of com-
puter graphics. Now you get to choose where to go next!

202 Afterword

Points

LINEAR ALGEBRA

This appendix serves as a cheat sheet for
linear algebra. The subject is presented as
a set of tools, their properties, and what you

can use them for. If you're interested in the
theory behind all this, you can pick up any introduc-
tory linear algebra textbook.

The focus here is exclusively on 2D and 3D algebra, as that’s what’s re-
quired in this book.

A point represents a position within a coordinate system.

We represent a point as a sequence of numbers between parentheses—
for example, (4, 3). We refer to points using capital letters, such as P or Q.

Each of the numbers in the point’s sequence is called a coordinate. The
number of coordinates is the point’s dimension. A point with two coordi-
nates is called two-dimensional, or 2D.

The order of the numbers is important; (4, 3) is not the same as (3, 4).
By convention, the coordinates are called x and y in 2D, and x, y, and z in

3D; so the point (4, 3) has an x coordinate of 4 and a y coordinate of 3.
Figure A-1 shows P, a 2D point with coordinates (4, 3).

Y
A

P4 3)
|

e

4 X

Figure A-1: The 2D point P has coordinates (4, 3).

We can also refer to specific coordinates of a point using a subscript, like
P, or Qy. So the point P can also be written as (Py, Py, P,) when convenient.

Vectors

A vector represents the difference between two points. Intuitively, imagine a
vector as an arrow that connects a point to another point; alternatively, think
of it as the instructions to get from one point to another.

Representing Vectors

We represent a vector as a set of numbers between parentheses, and refer to
them using a capital letter. This is the same representation we use for points,
so we add a small arrow on top to remember they’re vectors and not points.
For example, (2, 1) is a vector, which we might decide to call A. Figure A-2
shows two equal vectors, A and B.

Y
A

A'l)

°
. B(Z.’])

—
o

X

Figure A-2: The vectors A and B are equal.
Vectors don't have a position.

Despite sharing their representation with points, vectors don’t represent
or have a position; they are, after all, the difference between two positions.

204 Appendix: Linear Algebra

When you have a diagram like Figure A-2, you have to draw vectors some-
where; but the vectors A and B are equal, because they represent the same
displacement.

In addition, the point (2, 1) and the vector (2, 1) are unrelated. Sure, the
vector (2, 1) goes from (0, 0) to (2, 1), but it’s equally true that it goes from,
say, (5,5) to (7, 6).

Vectors are characterized by their direction (the angle in which they
point) and their magnitude (how long they are).

The direction can be further decomposed into orientation (the slope of
the line they’re on) and sense (which of the possible two ways along that line
they point). For example, a vector pointing right and a vector pointing left
both have the same horizontal orientation, but they have the opposite sense.
However, we don’t make this distinction anywhere in this book.

Vector Magnitude

You can compute the magnitude of a vector from its coordinates. The mag-
nitude is also called the length or norm of the vector. It’s denoted by putting
the vector between vertical pipes, as in | V|, and it’s computed as follows:

|‘7| =\ Vx2+Vy2 +Vz2

A vector with a magnitude equal to 1.0 is called a unit vector.

Point and Vector Operations

Now that we’ve defined points and vectors, let’s explore what we can do with
them.

Subtracting Points

A vector is the difference between two points. In other words, you can sub-
tract two points and get a vector:

V=P-Q

In this case, you can think of Vas “going” from Q to P, as in Figure A-3.

Appendix: Linear Algebra 205

206

V=P-Q

i
o

X

Figure A-3: The vector V is the difference
between P and Q.

Algebraically, you subtract each of the coordinates separately:

(Vx, Vya Vz)z(anPyaPz)_(Qx’Qy’Qz)z (Px_Qx’Py_anPz_Qz)

Adding a Point and a Vector

We can rewrite the equation above coordinate by coordinate:

Vi = Py— Qs
Vy=Py-Q
Vz=Pz_Qz

These are just numbers, so all the usual rules apply. This means you can do
this:

Qx+ Vi =Py
Qy+Vy=1y
Qz+Vz=Pz

And grouping the coordinates again,

Q+V=r

In other words, you can add a vector to a point and get a new point.
This makes intuitive and geometric sense; given a starting position (a point)
and a displacement (a vector), you end up in a new position (another point).
Figure A-4 presents an example.

Appendix: Linear Algebra

/P=O+V
\%

Q

i
o

X

Figure A-4: Adding V to Q gives us P.

Adding Vectors

You can add two vectors. Geometrically, imagine putting one vector “after”
another, as in Figure A-5.

Y
! /W /
R=W+V
e
T
R=V+W
X

Figure A-5: Adding two vectors. Addition
is commutative. Remember, vectors don’t
have a position.

As you can see, vector addition is commutative—that is, the order of the
operands doesn’t matter. In the diagram, we can see that V+ W= W+V.
Algebraically, you add the coordinates individually:

VW= (Vy, Vy, V) + (W, Wy, Wa) = (Vi + Wy, Vy + Wy, Vo + W)

Multiplying a Vector by a Number

You can multiply a vector by a number. This is called the scalar product. This
makes the vector shorter or longer, as you can see in Figure A-6.

Appendix: Linear Algebra 207

208

Figure A-6: Multiplying a vector by a number

If the number is negative, the vector will point the other way; this means
it changes its sense and therefore its direction. But multiplying a vector by a
number never changes its orientation—that is, it will remain along the same
line.

Algebraically, you multiply the coordinates individually:

k-V=k-(Vi,Vy, Vi) = (k- Vi, k- Vi, k- V)

You can also divide a vector by a number. Just like with numbers, divid-
ing by k is equivalent to multiplying by % As usual, division by zero doesn’t
work.

One of the applications of vector multiplication and division is to nor-
malize a vector—that is, to turn it into a unit vector. This changes the magni-
tude of the vector to 1.0, but doesn’t change its other properties. To do this,
we just need to divide the vector by its length:

‘7

V]

Viormatized =

Multiplying Vectors

You can multiply a vector by another vector. Interestingly, there are many
ways in which you can define an operation like this. We’re going to focus
on two kinds of multiplication that are useful to us: the dot product and the
cross product.

Dot Product
The dot product between two vectors (also called the inner product) gives you
a number. It’s expressed using the dot operator, as in V- W. It’s also written
between angle braces, as in (V, W).

Algebraically, you multiply the coordinates individually and add them:

(V, W) = ((Vx, Vy, Vi), (Wi, Wy, W2)) = Vie - Wy V- Wy + Vo - W,

Appendix: Linear Algebra

Geometrically, the dot product of Vand W is related to their lengths
and to the angle o between them. The exact formula neatly ties together
linear algebra and trigonometry:

(V,W) = | V| - [W] - cos(a)

Either of these formulas help us see that the dot product is commuta-
tive (that is, (\7, V_V) = <I7V, ‘7>) and that it’s distributive with respect to a scalar
product (that is, & - (V, W) = (k- V, W)).

An interesting consequence of the second formula is that if Vand W
are perpendicular, then cos(a) = 0 and therefore (V, W) is also zero. If V
and W are unit vectors, then (\7, V_V> is always between —1.0 and 1.0, with 1.0
meaning they’re equal and -1.0 meaning they’re opposite.

The second formula also suggests the dot product can be used to calcu-
late the angle between two vectors:

_ vV, W
a=cos! (H)
V|- W]

Note that the dot product of a vector with itself, (‘7, ‘7), reduces to the
square of its length:

(V.1 = V2 + 12 v = |7

This suggests another way to compute the length of a vector, as the square
root of its dot product with itself:

- =

V] =/(V. V)

Cross Product

The cross product between two vectors gives you another vector. It’s ex-
pressed using the cross operator, as in Vx W.

The cross product of two vectors is a vector perpendicular to both of
them. In this book we only use the cross product on 3D vectors, shown in
Figure A-7.

Appendix: Linear Algebra 209

210

VxW

N
— w

Figure A-7: The cross product of two vectors is
a vector perpendicular to both of them.

The computation is a bit more involved than the dot product. If R =
V x W, then

Ry=Vy W.=V;- W,
Ry=Vi W=V, - W,
Ry =V Wy=Vy- Wy

The cross product is not commutative. Specifically, Vx W= —(V_f/ X ‘7)

We use the cross product to compute the normal vector of a surface—that
is, a unit vector perpendicular to the surface. To do this, we take two vectors
on the surface, calculate their cross product, and normalize the result.

Matrices

A matrix is a rectangular array of numbers. For the purposes of this book,
matrices represent transformations that can be applied to points or vectors,
and we refer to them with a capital letter, such as M. This is the same way we
refer to points, but it will be clear by the context whether we’re talking about
a matrix or a point.

A matrix is characterized by its size in terms of columns and rows. For
example, this is a 4 X 3 matrix:

1 2 3 4
-3 -6 9 12
0 0 1 1

Matrix Operations

Let’s see what we can do with matrices and vectors.

Appendix: Linear Algebra

Adding Matrices

You can add two matrices, as long as they have the same size. The addition is
done element by element:

a b ¢ Jj k1 a+j b+k ¢+l
d e fl+|m n o]l]=|d+m e+n f+o
g h 1 p q g+p h+q i+r

Multiplying a Matrix by a Number

You can multiply a matrix by a number. You just multiply every element of
the matrix by the number:

Multiplying Matrices

You can multiply two matrices together, as long as their sizes are compatible:
the number of columns in the first matrix must be the same as the number
of rows in the second matrix. For example, you can multiply a 2 x 3 matrix
by a 3 x 4 matrix, but not the other way around! Unlike numbers, the order
of the multiplication matters, even if you're multiplying together two square
matrices that could be multiplied in either order.

The result of multiplying two matrices together is another matrix, with
the same number of rows as the left-hand side matrix, and the same num-
ber of columns as the right-hand side matrix. Continuing with our example
above, the result of multiplying a 2 x 3 matrix by a3 x 4 matrixisa 2 x 4
matrix.

Let’s see how to multiply two matrices, A and B:

a b ¢
A=
(e 7)

g h i
B=lk I m n
o p q r

To make things more clear, let’s group the values in A and B into vec-
tors: let’s write A as a column of row (horizontal) vectors and B as a row of
column (vertical) vectors. For example, the first row of A is the vector (a, b, ¢)
and the second column of B is the vector (4, /, p):

_ ((a,b,¢)
A= (Gen)

Appendix: Linear Algebra 211

212

L
B=|By By Bo Bj
o
We know that Ais 2 x 3, and B is 3 x 4, so we know the result will be a
2 x 4 matrix:

- L]
—Ap— Y o o o | - (€00 €01 €02 €03
<—A_i—> (Bo B B2 Bs)= (Clo €11 €12 613>

Now we can use a simple formulation for the elements of the resulting
matrix: the value of the element in row r and column ¢ of the result—that
is, ¢y—is the dot product of the corresponding row vector in A and column
vector in B, that is, A; and E;:

For example ¢ = (Ao, B}), which expandstoa-h+b-l+c-p.

Multiplying a Matrix and a Vector

You can think of an n-dimensional vector as either an n x 1 vertical matrix or
asa 1 x n horizontal matrix, and multiply the same way you would multiply
any two compatible matrices. For example, here’s how to multiply a2 x 3
matrix and a 3D vector:

x
a b ¢\ _(a-xtb-y*tc-z
d e f Z d-x+e-y+f-z

Since the result of multiplying a matrix and a vector (or a vector and a

matrix) is also a vector and, in our case, matrices represent transformations,
we can say that the matrix transforms the vector.

Appendix: Linear Algebra

INDEX

Numbers scene, 117, 118
2D, 9, 18, 203, 204. See also specific shading, 171, 174
objects shadows, 57

sorting, 151

3D, scene as, 9. See also specific objects
specular, 48

3D plane, equation for, 138

565 format, 8 textures, 180

888 format, 8 transforms, 120-121, 131
triangles, 96, 114, 116

A ambient light, 32, 32, 38, 194, 198

angle(s), 33, 34, 41

acceleration, hardware, 202 ApplyTransform function, 122

acceleration structures, 202
additive color model, 6, 6-7
algebra, linear

assumptions, basic, 16-17
atmospheric effects, 202

attribute-mapping algorithm, 153, 178
matrix operations, 210-213

points, 203-204, 205-210 B
vectors, 204-210

algorithms. See also back face culling, 157-161, 159

back faces, 158, 198

raytracer/raytracing -
attribute-mapping, 153, 178 B.e.21er cu.rve,.202
back face culling, 159 bilinear filtering, 181-183, 183

bounding sphere, 69-70, 139

basic rays, 27
brain, color and light within, 3

Bresenham’s Algorithm, 90

camera, 67 Bresenham’s Algorithm, 90
clipping, 144, 145-147 buffering, depth, 151-157, 152
depth, 153, 170

diffuse, 39 C

embarrassingly parallelizable, 67 caching, 68, 68

GPUs and, xix camera

gradient, 102 algorithm, 67

illumination at a point, 164 coordinate system of, 124
instances, 119 defining, 105

level-of-detail, 201 illustration of, 67, 198

lines and, 85-89 mipmap level and, 187
overview of, 15 online demonstration of, 67
painter’s, 150 orientation, 16, 17
perspective, 110 point of view of, 18, 58, 106
recursive, 58 position, 16, 17, 65-67, 130

reflections, 62 rotation matrix of, 66

214

Index

camera (continued)
space, 124, 125
transformation of, 122-124, 125,
131, 132
canonical representation, 126
canvas
as 2D, 9
coordinate system of, 2-3, 9
defined, 1
overview of, 1-3
scene versus, 9
size of, 130
to viewport, 17-18, 24, 66, 108, 129
CanvasToViewport function, 24, 66
Carmack, John, 199
Carmack’s Reverse, 199
Cartesian coordinates, 126-127
caustics, 202
center, 19
checkerboard texture, mipmapping of,
183-186
clamping, 9
ClipInstanceAgainstPlane function,
145-146
ClipInstance function, 145
clipping
as 3D operation, 147
algorithm, 144, 145-147
objects, whole, 139-141
online demonstration of, 147
overview of, 134
pseudocode for, 145-147
scene against plane, 135-137
triangles, 142-144
clipping plane, 134, 138-139, 144
clipping volume, 134, 134-135, 139
ClipScene function, 145
ClipTriangle function, 146
ClipTrianglesAgainstPlane function, 146
closed objects, 159
ClosestIntersection code, 54-5b
CMYK color model, 5
code, main method of, 24

color
additive model of, 6-7
channel, 8
CMYK model of, b
defined, 3
depth, 7-8, 8
light and, 3
manipulation of, 8-9
models of, 3-7
pixel assignment of, 2, 151-152
primary, 4
reflection of, 192
representation of, 7-8
RGB model of, 6
subtractive model of, 4-5
composite, 194
computational photography, 202
Computelighting function, 46, 47, 55-56,
61
computer graphics, introduction to,
Xvii, XX
computer screens, light and, 6
constructive solid geometry, 71-73
coordinate, 126-129, 203
coordinate systems
3D scenes and, 9
camera and, 124
illustration of, 2
model space, 119
origin within, 2, 16, 19
overview of, 2-3
tangent space, 191
transformations and, 122-124
world space, 119
crate, rendering of, 175-181
crayons, 4-5
cross product operation, 160-161,
209-210
cube
camera transformation and,
122-124
illustration of, 114, 131
mapping, 192, 192-193
open versus closed, 159

projecting of, 109-110
representing, 113-117
transformation of, 119-122
triangles and, 114-115, 116-117
CullBackFaces function, 159

D

Death Star, rendering of, 71-72
dependent variable, 87
depth, color and, 7-8
depth buffering, 151-157, 152, 198
diffuse reflection, 33, 33-39
dimension, 203
direction, vector, 205
directional lights, 31, 31, 38, 52-54,
199-200
division, perspective projection and,
128-129
Doom 3, 199
dot product, 21, 208, 208-209
DrawFilledTriangle function, 94-95,
149-150
drawing
lines, 81-86
triangles, filled, 92-96
triangles, shaded, 97-103
triangles, wireframe, 91-92, 96
DrawLine function
Interpolate function and, 88-89
use of, 81-82, 83, 86-87, 109-110
wireframe triangles, 91-92
DrawShadedTriangle function, 101-102,
165-166
DrawWireframeTriangle function, 91-92,
150
dynamic objects, 193

Earth, Sun and, 31, 32

edge shading, 98-100

edges, determination of, 195
effects, atmospheric, 202
Einstein, Albert, xviii
energy, light rays and, 33-34

environment mapping, 192-193
equation
3D plane, 138
clipping plane, 144
diffuse reflection, 36
illumination, 45, 164, 169-170
parametric, 19, 144
perspective projection, 107-109,
133, 156
projection, 107-109, 125, 138, 147
quadratic, 22
ray, 19, 23
sphere, 19-20

F

field of view (FOV), 16
filled triangles, 91-96
filtering, 181-183, 183, 187
first light, illustration of, 194
fixed camera orientation, 16
fixed viewing position, 16
flat shading, 164-165, 165, 169, 174
font rendering, 202
FOV (field of view), 16
frame, dimensions of, 16
frequency, wavelength and, 4
front faces, 158, 198
functions
ApplyTransform function, 122
CanvasToViewport function, 24, 66
ClipInstanceAgainstPlane function,
145-146
ClipInstance function, 145
ClipScene function, 145
ClipTriangle function, 146
ClipTrianglesAgainstPlane function,
146
Computelighting function, 46, 47,
55-56, 61
CullBackFaces function, 159
DrawFilledTriangle function, 94-95,
149-150

Index 215

216

Index

functions (continued)

DrawLine function, 81-82, 83, 86-87,
88-89, 91-92, 109-110

DrawShadedTriangle function,
101-102, 165-166

DrawWireframeTriangle function,
91-92, 150

GetTexel function, 183

Interpolate function, 87-90, 99

InteresectRaySphere function, 25, 68

linear, 80-81, 87-90, 98-99,
155-156, 157

ProjectVertex function, 109-110

PutPixel function, 3, 10, 80, 199

RenderInstance function, 118, 121

RenderModel function, 130

RenderObject function, 116

RenderScene function, 118, 130-131

RenderTriangle function, 116

SignedDistance function, 146-147

ViewportToCanvas function, 109-110

G

gamma correction, 202

GetTexel function, 183

global illumination, 201
Gouraud, Henri, 166

Gouraud shading, 165-169, 174
GPUs, xix

gradient, 97-103

half-spaces, 135

hard shadows, 193

hardware acceleration, 202

high dynamic range, 202

homogeneous coordinates, 126,
126-129

horizontal segments, filled triangles
and, 92-96

illumination. See also light
defined, 163
equation, 45, 164, 169-170
global, 201
shading versus, 163-164
image-based lighting, 202
image compression, 202
image processing, 202
image segmentation, 202
independent variable, 87
infinite hall effect, 58
infrared wavelengths, 4
inner product, 208
instance, 117, 117-119
intensity (i), 30
InteresectRaySphere function, 25, 68
interior shading, 100-102
Interpolate function, 87-90, 99
interpolation, linear
function, 87-90
illustration of, 179, 180
texels and, 178
use of, 155, 182-183
intersection, 135, 144

K

knowledge, benefits of, xix

L

lens, rendering of, 71-72
level-of-detail algorithms, 201
light. See also illumination
ambient, 32, 32, 38, 194, 198
angle of, 33, 34
assumptions of, 29-30
color and, 3
composite, 194
diffuse reflection of, 33-39
directional, 31, 31, 38, 52-54,
199-200
discontinuity of, 165-166

first, 194
image-based, 202
intensity of, 34
introduction of, 29
mirror reflection of, 40, 57-60
omnidirectional, 30
point, 30, 38
reflection of, 40
refraction of, 74
scattered, 32
second, 194
single point illumination of, 32-33
sources of, 18, 30-32, 38
surface reflection of, 39-40
white, 5
light bulb, 30
light vector, 30, 31, 34
linear algebra
matrix operations, 210-213
points, 203-204, 205-210
vectors, 204-210
linear function, 80-81, 87-90, 98-99,
155-156, 157
linear interpolation
function, 87-90
illustration of, 179, 180
texels and, 178
use of, 155, 182-183
lines, 80-89, 108-109

M

magnitude, 205

mapping, 189-193

matrices
adding, 211
defined, 210
multiplying, 211-212
operations of, 210-213
projection, 128-129
rotation, 66, 127
scale, 127
transform, 124-125, 129-131
translation, 127-128
vector multiplication and, 212
viewpoint-to-canvas, 129

matte objects, 33-39, 40
mipmapping, 183-186, 186
mirrors, reflections and, 40, 57-60
models, 117, 117-122, 124-125, 202
model space, 119, 124-125

model transform, 120

Moon, Sun and, 32

nearest neighbor filtering, 181
normal mapping, 189-192, 190
normals, 36-37, 167-168, 189
normal vector, 34, 210

0

objects. See also specific objects
clipping, 139-141
closed, 159
constructive solid geometry and,
71-73
crate, 175-181
dynamic, 193
illustration of, 136, 137, 139
matte, 33-39, 40
open, 159
projection plane and, 134
questions related to, 79
reflecting, 192
shiny, 33, 39-48
solid, 149-150
static, 193
omnidirectional light, 30
orientation, camera, 16, 17
origin, 2, 16, 19

orthographic projection, 199, 199-200

P

P/, finding, 106-107

painter’s algorithm, 150, 150-151
parameter space, 23

parametric equation, 19, 144
particle systems, 202

pass, 193-194

percentage closer filtering, 200

Index 217

218

Index

performance optimizations, 67-70
perspective projection
camera and, 125
division and, 128-129
equation of, 107-109, 133, 156
illustration of, 106, 107
limitations of, 147
online demonstration of, 110
overview of, 105-111
Phong, Bui Tuong, 171
Phong shading, 169-173, 171, 174
photography, computational, 202
photon mapping, 18
photon tracing, 18
physically based rendering, 201
pixel(s)
back face culling and, 157
canvas coordinates of, 2, 9, 17, 82

color assignment to, 2, 80, 151-152

control over, 94
depth buffering and, 151-152
illustration of, 18
mipmapping of, 183-186
normal mapping and, 190
points to, 108
ray from, 58
shading, 191
shadows and, 193-195
stencil buffering of, 199
subsampling of, 70
supersampling of, 75
texels as, 177, 181
plane, projection, 18, 134, 135-137,
138
point lights, 30, 38
points, 203, 203-204, 205-210
position, camera, 16, 17
position, point lights and, 30
PQR triangle, 34-35
precomputing, 186
primary colors, 4, 6
projection. See also perspective
projection
of a cube, 109-110

equation of, 107-109, 125, 138, 147

of lines, 108-109
matrix, 128-129
orthographic, 199, 199-200
plane, 18, 23, 66, 134, 135-137, 138
of vertices, 115-116
ProjectVertex function, 109-110
pseudocode
back face culling, 159
clipping, 145-147
diffuse reflection rendering, 37-39
DrawShadedTriangle, 101-102
interpolated color, 183
reflections, 61
scene language of, 26
scene rendering, 130-131
shadow rendering, 54-56
use of, 24
PutPixel function, 3, 10, 80, 199

Q

quadratic equation, 22

R5G6B5 format, 8

R8GS8BS8 format, 8

radius, 19

ranges, PutPixel and, 3

rasterizer. See also PutPixel function
characteristics of, 173
extensions to, 189-200
reference scene by, 172
simple scene by, xviii
textures by, xix

rays. See also light
camera position and, 66
energy from, 33-34
equation of, 19, 23
intersections of, 196-198
mirror reflection of, 57-60
origin of, 25
reflection of, 40
refraction of, 74
shadows and, 52-54
shadow volume and, 196-198

sphere and, 20-22
tracing, 18-22
raytracer,/raytracing
algorithm of, 17
challenges of, 79
recursive, xix, b8
scene of, xviii, 27
speed increase of, 67-68
spheres and, 19-20
RBG color model, 6
real-world units, 9
recursion_depth, 61
recursion limit, 58
recursive raytracing, 58
reflections
angles and, 41
illustration of, 58, 59
mirrors and, 57-60
online demonstration of, 62
rasterizer and, 192
recursive, xix
rendering with, 60-62
vectors and, 41
reflective property, 60-61
ReflectRay formula, 60-61
refraction, 74-75
refraction index, 74
rendering
curve, 202
font, 202
objects, solid, 149-150
physically based, 201
shadows, 193-200
of Swiss landscape, 13-15
terrain, 202
voxel, 201
RenderInstance function, 118, 121
RenderModel function, 130
RenderObject function, 116
RenderScene function, 118, 130-131
RenderTriangle function, 116
representation, of color, 7-8
resolution, shadow maps and, 200
rotation, applying, 120-121
rotation matrix, 66, 127

S

scale matrix, 127
scene
as 3D, 9
algorithm, 117, 118
clipping against plane, 135-137
coordinate systems for, 9
defined, 9
illustration of, 26, 136, 137
light rendering of, 194
object level of, 136
online demonstration of, 117
overview of, 9-10
raytraced, 27
rendering process of, 15, 118,
130-131
triangle level of, 137
vertex level of, 137
second light, illustration of, 194
segment-plane intersection, 144

segments, horizontal, filled triangles

and, 92-96
shaded triangles, 97-103, 98
shaders, xix, xix
shading
algorithm, 171, 174
defined, 163
edge, 98-100
flat, 164-165, 169, 174
Gouraud, 165-169, 174
illumination versus, 163-164
interior, 100-102
online demonstration of, 171
Phong, 169-173, 171, 174
shadow coherence, 68, 69
shadow mapping, 199-200
shadows
algorithm, 57
ambient light and, 198
defined, 51
hard, 193
illustration of, 52, 56
online demonstration of, 57
optimizations of, 68-69

Index

219

220

Index

shadows (continued)
overview of, 193-200
rendering with, 54-57
soft, 199
stencil, 193-199
understanding, 51-54
volumes of, 195-196
shadow volumes, 195, 196-198
shiny objects, 33, 39-48
signed distance, 138
SignedDistance function, 146-147
single point, illumination of, 32-33
slope, 82, 82-87
Snell’s Law, 74
soft shadows, 199
software, shaders as, xix
solid objects, rendering of, 149-150
sorting algorithm, 151
spatial structures, 69-70
specular exponent, 43
specular highlight, 172
specular reflection, 39-48, 40
sphere
bounding, 69-70, 139
defined, 19
equation for, 19-20
illustration of, 20, 172, 173
intersection of, 73
light discontinuity of, 165-169
normals of, 36-37
as primitive, 70
ray and, 20-22
rendering of, 22-27
shadows and, 52-54
subtraction of, 73
union of, 73
splines, 202
static objects, 193
stencil buffer, 195, 198-199
stencil shadows, 193-199
structures, acceleration, 202
subsampling, 70, 70
subtractive color model, 4, 4-5, 6
Sun, approximation of, 31

supersampling, 75, 75
Swiss landscape, rendering of, 13-15

T

tangent space, 191
terrain rendering, 202
texels, 177, 181-183
texture mapping, 189
textures
bilinear filtering and, 181-183
checkerboard, 183-186
crate painting, 175-181
cube map, 192
defined, 176
illustration of, 178, 182
mapping of, 189
mipmapping and, 183-186
online demonstration of, 180
precomputing of, 186
procedural generation of, 202
rasterized, xix
trilinear filtering of, 187
TraceRay method
computing requirements of, 71
mirror reflection and, 57-60
recursion limit to, 61
shadow rendering and, 54-55
specular reflection and, 47
transparency and, 73
triangles and, 71
use of, 24-25
transform, online demonstration of,
131
transform matrix, 124-125, 129-131
translation, applying, 120-121
translation matrix, 127-128
transparency, 73-75
triangles
algorithm, 96, 114, 116
back face culling of, 157-161
back faces of, 158, 198
classifying, 159-161
clipping and, 136-137, 142-144
cubes and, 114-115, 116-117

filled, 91-96
front faces of, 158, 198
illustration of, 137, 142, 143
normal map to, 190
online demonstration of, 96
as primitive, 71
shaded, 97-103
shading of, 163-173
solid objects rendering and,
150-151
wireframe, 91-92, 96
Triangles list, 115
trilinear filtering, 187

u

ultraviolet wavelengths, 4

v

values, caching, 68

vectors
adding, 206-207
colors as, 8
cross product, 160-161, 209-210
defined, 204
direction of, 205
dot product of, 21, 208-209
illustration of, 34
length of, 20
light, 31
magnitude of, 205
manipulation of, 126
matrix multiplying and, 212
multiplying by number, 207-208
normal, 34, 36-37, 210
normal mapping and, 190
operations of, 205-210
reflection, 41
representing, 204-205

Vertex list, 115

verticies. See also cube; triangles
clipping and, 142-144
projection of, 115-116
sorting of, 93, 102
sphere normals for, 167-168

transformation of, 119
video games, rendering process within,
147
viewport. See also CanvasToViewport
function
canvas to, 17-18
coordinates of, 125
defined, 16
defining, 105-106
illustration of, 18
rays through, 18, 23, 70
size of, 130
visibility within, 134-135
viewport-to-canvas, 108, 129
ViewportToCanvas function, 109-110
visible range, 4
voxel rendering, 201

w

wavelength, frequency and, 4
w-coordinate, 127-128. See also
coordinate systems
websites
camera position demo, 67
clipping demo, 147
depth buffering demo, 153
diffuse demo, 39
gradient demo, 102
instances demo, 119
lines demo, 89
perspective demo, 110
raytraced scene demo, 27
reflection demo, 62
scene demo, 117
shading demo, 171
shadow rendering demo, 57
specular reflection demo, 48
texture demo, 180
transform demo, 131
triangle demo, 96
white light, 5
wireframe, 91
wireframe triangles, 91-92, 96
wooden texture, 175-183
world space, 119, 124-125

Index 221

X

x-coordinate, 2, 3, 81. See also
coordinate systems

Y

y-coordinate, 2, 3, 81. See also
coordinate systems

4

z-coordinate, 128, 152. See also
coordinate systems

222 Index

The fonts used in Computer Graphics from Scratch are New Baskerville, Fu-
tura, The Sans Mono Condensed, and Dogma. The book was typeset with
I&TEX 22 package nostarch by Boris Veytsman (2008/06/06 v1.3 Typesetting
books for No Starch Press).

RESOURCES

Visit https://nostarch.com/computer-graphics-scratch/ for errata and more information.

More no-nonsense books from [@ NO STARCH PRESS

DIVE INTO
ALGORITHMS

DIVE INTO ALGORITHMS
APythonic Adventure for the
Intrepid beginner

BY BRADFORD TUCKFIELD
248 pr., $39.95

ISBN 978-1-7185-0068-6

REAL WORLD

PYTHON

S
REAL-WORLD PYTHON
AHacker’s Guide to Solving Problems
with Code

BY LEE VAUGHAN

360 pr., $34.95
ISBN 978-1-7185-0062-4

LINEAR
ALGEBRA

\ _—
THE MANGA GUIDETO
LINEAR ALGEBRA
BY SHIN TAKAHASHI,
IROHA INOUE AND
TREND-PRO CO., LTD.
264 pr., $24.95
ISBN 978-1-59327-413-9

HOW COMPUTERS

HOW COMPUTERS REALLY WORK
AHands-0n Guide to the Inner Workings of
the Machine

BY MATTHEW JUSTICE

380 pp., $39.95

1SBN 978-1-7185-0066-2

liea
LEARN PYTHON
VISUALLY

LEARN PYTHON VISUALLY
Creative Coding with Processing.py
BY TRISTAN BUNN

296 pp., $49.99

1SBN 978-1-7185-0096-9

—/—
THE
SECRET LIFE OF

PROGRAMS

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
BY JONATHAN E. STEINHART

504 pp., $44.95

ISBN 978-1-59327-970-7

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

\

oy
=/}
wwt
S
Yoo
il
(
>y
Vo

Never before has the world relied so heavily on the Internet
to stay connected and informed. That makes the Electronic
Frontier Foundation’s mission—to ensure that technology
supports freedom, justice, and innovation for all people—
more urgent than ever.

For over 30 years, EFF has fought for tech users through
activism, in the courts, and by developing software to over-
come obstacles to your privacy, security, and free expression.
This dedication empowers all of us through darkness. With
your help we can navigate toward a brighter digital future.

ELECTRONIC
FRONTIER
FOUNDATION

JUST ADD HIGH
SCHOOL MAFH AND
BASIC CODING
SKILLS

Computer graphics programming books are often
math-heavy and intimidating for newcomers. Not this
one. Computer Graphics from Scratch takes a simpler
approach by keeping the math to a minimum and
focusing on only one aspect of computer graphics,
3D rendering.

You'll build two complete, fully functional renderers: a
raytracer, which simulates rays of light as they bounce
off objects, and a rasterizer, which converts 3D models
info 2D pixels. As you progress you'll learn how to
create realistic reflections and shadows, and how to
render a scene from any point of view.

Pseudocode examples throughout make it easy to
write your renderers in any language, and links to
live JavaScript demos of each algorithm invite you to
explore further on your own.

Learn how to:
e Use perspective projection to draw 3D obijects
on a 2D plane
e Simulate the way rays of light interact with surfaces

e Add mirrorlike reflections and cast shadows to objects

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

©

no starch
press

A PLAIN
ENGLISH

INTRODUCTION

® Render a scene from any camera position using
clipping planes

e Use flat, Gouraud, and Phong shading to mimic
real surface lighting

e Paint texture details onto basic shapes to create
realisticlooking objects

Whether you're an aspiring graphics engineer or

a novice programmer curious about how graphics
algorithms work, Gabriel Gambetta’s simple, clear
explanations will quickly put computer graphics concepts
and rendering fechniques within your reach. All you
need is basic coding knowledge and high school math.
Computer Graphics from Scratch will cover the rest.

ABOUT THE AUTHOR

Gabriel Gambetta has been coding games since

he was five years old. After earning his degree in
computer science, he launched a game development
company, where he worked for over a decade while
teaching computer graphics at a local university. He
is currently employed as a senior software engineer at
Google in Zirich.

$49.99 (565.99 CDN)

978-1-7185-0076-1
54999

|
9781718500761

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book Is For
	What This Book Covers
	Why Read This Book?
	About This Book
	About the Author

	Chapter 1: Introductory Concepts
	The Canvas
	Coordinate Systems

	Color Models
	Subtractive Color Model
	Additive Color Model
	Forget the Details

	Color Depth and Representation
	Color Manipulation
	The Scene
	Summary

	Part 1: Raytracing
	Chapter 2: Basic Raytracing
	Rendering a Swiss Landscape
	Basic Assumptions
	Canvas to Viewport
	Tracing Rays
	The Ray Equation
	The Sphere Equation
	Ray Meets Sphere

	Rendering our First Spheres
	Summary

	Chapter 3: Light
	Simplifying Assumptions
	Light Sources
	Point Lights
	Directional Lights
	Ambient Light

	Illumination of a Single Point
	Diffuse Reflection
	Modeling Diffuse Reflection
	The Diffuse Reflection Equation
	Sphere Normals
	Rendering with Diffuse Reflection

	Specular Reflection
	Modeling Specular Reflection
	The Specular Reflection Term
	The Full Illumination Equation
	Rendering with Specular Reflections

	Summary

	Chapter 4: Shadows and Reflections
	Shadows
	Understanding Shadows
	Rendering with Shadows

	Reflections
	Mirrors and Reflection
	Rendering with Reflections

	Summary

	Chapter 5: Extending the Raytracer
	Arbitrary Camera Positioning
	Performance Optimizations
	Parallelization
	Caching Immutable Values
	Shadow Optimizations
	Spatial Structures
	Subsampling

	Supporting Other Primitives
	Constructive Solid Geometry
	Transparency
	Refraction

	Supersampling
	Summary

	Part 2: Rasterization
	Chapter 6: Lines
	Describing Lines
	Drawing Lines
	Drawing Lines with Any Slope
	The Linear Interpolation Function
	Summary

	Chapter 7: Filled Triangles
	Drawing Wireframe Triangles
	Drawing Filled Triangles
	Summary

	Chapter 8: Shaded Triangles
	Defining Our Problem
	Computing Edge Shading
	Computing Interior Shading
	Summary

	Chapter 9: Perspective Projection
	Basic Assumptions
	Finding P’
	The Projection Equation
	Properties of the Projection Equation
	Projecting Our First 3D Object
	Summary

	Chapter 10: Describing and Rendering a Scene
	Representing a Cube
	Models and Instances
	Model Transform
	Camera Transform
	The Transform Matrix
	Homogeneous Coordinates
	Homogeneous Rotation Matrix
	Homogeneous Scale Matrix
	Homogeneous Translation Matrix
	Homogeneous Projection Matrix
	Homogeneous Viewport-to-Canvas Matrix

	The Transform Matrix Revisited
	Summary

	Chapter 11: Clipping
	An Overview of the Clipping Process
	The Clipping Volume
	Clipping the Scene Against a Plane
	Defining the Clipping Planes
	Clipping Whole Objects
	Clipping Triangles
	Segment-Plane Intersection

	Clipping Pseudocode
	Clipping in the Rendering Pipeline
	Summary

	Chapter 12: Hidden Surface Removal
	Rendering Solid Objects
	Painter’s Algorithm
	Depth Buffering
	Using 1/Z instead of Z

	Back Face Culling
	Classifying Triangles

	Summary

	Chapter 13: Shading
	Shading vs. Illumination
	Flat Shading
	Gouraud Shading
	Phong Shading
	Summary

	Chapter 14: Textures
	Painting a Crate
	Bilinear Filtering
	Mipmapping
	Trilinear Filtering
	Summary

	Chapter 15: Extending the Rasterizer
	Normal Mapping
	Environment Mapping
	Shadows
	Stencil Shadows
	Shadow Mapping

	Summary

	Afterword
	Appendix: Linear Algebra
	Points
	Vectors
	Representing Vectors
	Vector Magnitude

	Point and Vector Operations
	Subtracting Points
	Adding a Point and a Vector
	Adding Vectors
	Multiplying a Vector by a Number
	Multiplying Vectors

	Matrices
	Matrix Operations
	Adding Matrices
	Multiplying a Matrix by a Number
	Multiplying Matrices
	Multiplying a Matrix and a Vector

	Index

